Skip to main content
Log in

Spectrally-Consistent Regularization of Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The incompressible Navier–Stokes equations form an excellent mathematical model for turbulent flows. However, direct simulations at high Reynolds numbers are not feasible because the convective term produces far too many relevant scales of motion. Therefore, in the foreseeable future, numerical simulations of turbulent flows will have to resort to models of the small scales. Large-eddy simulation (LES) and regularization models are examples thereof. In the present work, we propose to combine both approaches in a spectrally-consistent way: i.e.  preserving the (skew-)symmetries of the differential operators. Restoring the Galilean invariance of the regularization method results into an additional hyperviscosity term. In this way, the convective production of small scales is effectively restrained whereas the destruction of the small scales is enhanced by this hyperviscosity effect. This approach leads to a blending between regularization of the convective term and LES. The performance of these improvements is assessed through application to Burgers’ equation, homogeneous isotropic turbulence and a turbulent channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Perot, J.B.: Discrete conservation properties of unstructured mesh schemes. Ann. Rev. Fluid Mech. 43, 299–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guermond, J.L., Oden, J.T., Prudhomme, S.: Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6, 194–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Geurts, B.J., Holm, D.D.: Regularization modeling for large-eddy simulation. Phys. Fluids 15, L13–L16 (2003)

    Article  MathSciNet  Google Scholar 

  5. Guermond, J.L., Prudhomme, S.: On the contruction of suitable solutions to the Navier–Stokes equations and questions regarding the definition of large-eddy simulations. Physica D 207, 64–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leray, J.: Sur le movement d’un liquide visqueaux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-\(\alpha \) model of turbulence. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K.: Incompressibility of the Leray-\(\alpha \) model for wall-bounded flows. Phys. Fluids 18(1), 018103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geurts, B.J., Holm, D.D.: Leray and LANS-\(\alpha \) modelling of turbulent mixing. J. Turbul. 7, 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Norgard, G., Mohseni, K.: A regularization of the Burgers equation using a filtered convective velocity. J. Phys. A Math. Theor. 41(34), 344016 (2008). https://doi.org/10.1088/1751-8113/41/34/344016

    Article  MathSciNet  MATH  Google Scholar 

  11. van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K.: Leray-\(\alpha \) simulations of wall-bounded turbulent flows. Int. J. Heat Fluid Flow 30(6), 1044–1053 (2009)

    Article  Google Scholar 

  12. Graham, J.P., Holm, D.D., Mininni, P., Pouquet, A.: The effect of subfilter-scale physics on regularization models. J. Sci. Comput. 49(1), 21–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Picano, F., Hanjalić, K.: Leray-\(\alpha \) regularization of the Smagorinsky-closed filtered equations for turbulent jets at high Reynolds numbers. Flow Turbul. Combust. 89(4), 627–650 (2012)

    Article  Google Scholar 

  14. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model for fluid turbulence. Physica D 152, 505–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guermond, J.L., Oden, J.T., Prudhomme, S.: An interpretation of the Navier–Stokes-alpha model as a frame-indifferent Leray regularization. Physica D 177, 23–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verstappen, R.: On restraining the production of small scales of motion in a turbulent channel flow. Comput. Fluids 37, 887–897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trias, F.X., Verstappen, R.W.C.P., Gorobets, A., Soria, M., Oliva, A.: Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity. Comput. Fluids 39, 1815–1831 (2010)

    Article  MATH  Google Scholar 

  18. Trias, F.X., Verstappen, R.W.C.P.: On the construction of discrete filters for symmetry-preserving regularization models. Comput. Fluids 40, 139–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Trias, F.X., Gorobets, A., Pérez-Segarra, C.D., Oliva, A.: DNS and regularization modeling of a turbulent differentially heated cavity of aspect ratio 5. Int. J. Heat Mass Transf. 57, 171–182 (2013)

    Article  Google Scholar 

  20. Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C.D., Verstappen, R.W.C.P.: Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured meshes. J. Comput. Phys. 258, 246–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  22. Carati, D., Winckelmans, G.S., Jeanmart, H.: Exact expansions for filtered-scales modelling with a wide class of LES filters. In: Voke, P.R., Sandham, N.D., Kleiser, L. (eds.) Direct and Large-Eddy Simulation III, pp. 213–224. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  23. Chae, D.: On the spectral dynamics of the deformation tensor and a new a priori estimates for the 3D Euler equations. Commun. Math. Phys. 263, 789–801 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verstappen, R.: When does eddy viscosity damp subfilter scales sufficiently? J. Sci. Comput. 49(1), 94–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galanti, B., Gibbon, J., Heritage, M.: Vorticity alignment results for the three-dimensional Euler and Navier–Stokes equations. Nonlinearity 10(6), 1675–1694 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dabbagh, F., Trias, F.X., Gorobets, A., Oliva, A.: On the evolution of flow topology in turbulent Rayleigh–Bénard convection. Phys. Fluids 28, 115,105 (2016)

    Article  Google Scholar 

  27. Donzis, D.A., Sreenivasan, K.R.: The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech. 657, 171–188 (2010)

    Article  MATH  Google Scholar 

  28. Verstappen, R.: Blended scale-separation models for large eddy simulations. In: 14th European Turbulence Conference, Lyon (2013)

  29. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  30. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  31. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085,106 (2011)

    Article  Google Scholar 

  32. Trias, F.X., Folch, D., Gorobets, A., Oliva, A.: Building proper invariants for eddy-viscosity subgrid-scale models. Phys. Fluids 27(6), 065,103 (2015)

    Article  Google Scholar 

  33. Basu, S.: Can the dynamic eddy-viscosity class of subgrid-scale models capture inertial-range properties of Burgers turbulence? J. Turbul. 10(12), 1–16 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Helder, J., Verstappen, R.: On restraining convective subgrid-scale production in Burgers’ equation. Int. J. Numer. Methods Fluids 56(8), 1289–1295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, S., Doolen, G.D., Kraichnan, R.H., She, Z.: On statistical correlations between velociy increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids A 5, 458 (1993)

    Article  Google Scholar 

  36. Capuano, F., Coppola, G., Balarac, G., de Luca, L.: Energy preserving turbulent simulations at a reduced computational cost. J. Comput. Phys. 298, 480–494 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time-integration of Navier–Stokes equations. Numer. Heat Transf. B 60(2), 116–134 (2011)

    Article  Google Scholar 

  38. Gorobets, A., Trias, F.X., Soria, M., Oliva, A.: A scalable parallel Poisson solver for three-dimensional problems with one periodic direction. Comput. Fluids 39, 525–538 (2010)

    Article  MATH  Google Scholar 

  39. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  MATH  Google Scholar 

  40. Trias, F.X., Gorobets, A., Oliva, A.: A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity. J. Comput. Phys. 253, 405–417 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(Re_{\tau } = 590\). Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  42. Dean, R.B.: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. Trans. ASME 100(2), 215–223 (1978)

    Article  Google Scholar 

  43. Trias, F.X., Gorobet, A., Silvis, M.H., Verstappen, R.W.C.P., Oliva, A.: A new subgrid characteristic length for turbulence simulations on anisotropic grids. Phys. Fluids 29(11), 115109 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Ministerio de Economía y Competitividad, Spain (ENE2017-88697-R) and a Ramón y Cajal postdoctoral contract (RYC-2012-11996). Calculations have been performed on the IBM MareNostrum supercomputer at the Barcelona Supercomputing Center (FI-2016-3-0036). The authors thankfully acknowledge these institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Trias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trias, F.X., Folch, D., Gorobets, A. et al. Spectrally-Consistent Regularization of Navier–Stokes Equations. J Sci Comput 79, 992–1014 (2019). https://doi.org/10.1007/s10915-018-0880-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0880-x

Keywords

Mathematics Subject Classification

Navigation