Skip to main content
Log in

A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article is concerned with a posteriori error estimates for a discrete-fracture, multidimensional, numerical model for flow in a fractured porous medium. Local residual error estimators are defined and upper and lower bounds in terms of these estimators for both the pressure and the Darcy velocity are derived. Numerical examples using these estimates for automatic grid refinement are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain decomposition for some transmission problems in flow in porous media. In: Chen, Z., Ewing, R.E., Shi, Z.C. (eds.) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, vol. 552, pp. 22–34. Springer-Verlag, Berlin (2000)

    Chapter  Google Scholar 

  2. Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuvška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrios, T.P., Behrens, E.M., González, M.: Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity. Appl. Numer. Math. 84, 46–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardi, C., Hecht, F.: Quelques Propriétés d’approximation des éléments Finis de Nédélec, application à l’analyse a Posteriori, vol. 344(7), pp. 461–466. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  6. Bernardi, C., Hecht, F., Mghazli, Z.: Mortar finite element discretization for the flow in a nonhomogeneous porous medium. Comput. Methods Appl. Mech. Eng. 196(8), 1554–1573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problemes Aux Limites Elliptiques (Vol, vol. 45. Springer, Berlin (2004)

    MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, vol. 44, pp. 678–685. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  9. Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33(6), 2431–2444 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. Am. Math. Soc. 66(218), 465–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures*. ESAIM Math. Model. Numer. Anal. 48(4), 1089–1116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)

    Article  Google Scholar 

  13. Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013)

    Article  MATH  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)

    MATH  Google Scholar 

  15. Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)

  16. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)

    Article  Google Scholar 

  18. Larson, M.G., Målqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108(3), 487–500 (2008)

    Article  MathSciNet  Google Scholar 

  19. Lions, J.L., Magenes, E.: Problemes aux limites non homogenes et applications. Dunod, Paris (1968)

  20. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75(256), 1659–1674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mghazli, Z., Naji, I.: Analyse a posteriori d’erreur par reconstruction pour un modèle d’écoulement dans un milieu poreux fracturé. C. R. Math. 355(3), 304–309 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nicaise, S., Creusé, E.: Isotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence forme. Electron. Trans. Numer. Anal. 23, 38–62 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Roberts, J.E., Thomas, J.-M.: Handbook of Numerical Analysis 2, Finite Element Methods—Part 1, volume 2, Chapter Mixed and Hybrid Methods, pp. 523–639. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1991)

    Google Scholar 

  25. Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.I.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19(6), 1219–1230 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serres, C., Alboin, C., Jaffre, J., Roberts, J.: Modeling fractures as interfaces for flow and transport in porous media (No. IRSN-DES–497). Inst. de Radioprotection et de Surete Nucleaire (2002)

  27. Verfürth, R.: A Review of a Posteriori Error Estimation. In and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Amsterdam (1996)

    MATH  Google Scholar 

  28. Vohralík, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comput. 79(272), 2001–2032 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wheeler, M.F., Yotov, I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43(3), 1021–1042 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wohlmuth, B., Hoppe, R.: A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements. Math. Comput. Am. Math. Soc. 68(228), 1347–1378 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Naji.

Additional information

This work was supported by the Project HYDRINV-INRIA and PHC Volubilis \(\hbox {N}^0\) MA/10/225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, F., Mghazli, Z., Naji, I. et al. A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures. J Sci Comput 79, 935–968 (2019). https://doi.org/10.1007/s10915-018-0875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0875-7

Keywords

Mathematics Subject Classification

Navigation