Skip to main content
Log in

Enriched Spectral Methods and Applications to Problems with Weakly Singular Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Usual spectral methods are very effective for problems with smooth solutions, but their accuracy will be severely limited if solution of the underlying problems exhibits singular behavior. We develop in this paper enriched spectral-Galerkin methods (ESG) to deal with a class of problems for which the form of leading singular solutions can be determined. Several strategies are developed to overcome the ill conditioning due to the addition of singular functions as basis functions, and to efficiently solve the approximate solution in the enriched space. We validate ESG by solving a variety of elliptic problems with weakly singular solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adcock, B., Huybrechs, D.: Frames and numerical approximation (2016). arXiv:1612.04464 [math.NA]

  2. Auteri, F., Parolini, N., Quartapelle, L.: Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys. 183(1), 1–25 (2002)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Method Appl. M. 201, 91–111 (2012)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Miller, A.: The post–processing approach in the finite element method–Part 2: The calculation of stress intensity factors. Int. J. Numer. Meth. Eng. 20(6), 1111–1129 (1984)

    Article  Google Scholar 

  5. Björck, A., Paige, C.C.: Loss and recapture of orthogonality in the modified gram-schmidt algorithm. SIAM J. Matrix Anal. Appl. 13(1), 176–190 (1992)

    Article  MathSciNet  Google Scholar 

  6. Botella, O., Peyret, R.: Computing singular solutions of the naviercstokes equations with the chebyshev collocation method. Int. J. Numer. Methods Fluids 36, 125 (2001)

    Article  Google Scholar 

  7. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional laplacian. Comm. Partial Differ. Eq. 32(8), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Part. Differ. Eq. 36(8), 1353–1384 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Shen, J., Wang, L.L.: Generalized jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  12. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Math, vol. 2004. Springer, Berlin (2010)

  13. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  14. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Mainardi, F.: Fractional oscillations and Mittag-Leffler functions. Citeseer, Prineton (1996)

    MATH  Google Scholar 

  16. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Number 26 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1977)

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  18. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 298628 (2011). https://doi.org/10.1155/2011/298628

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  20. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  21. Li, Z.C., Lu, T.T.: Singularities and treatments of elliptic boundary value problems. Math. Comput. Mod. 31(8), 97–145 (2000)

    Article  MathSciNet  Google Scholar 

  22. Li, Z.C., Lu, T.T., Hu, H.Y., Cheng, A.H.: Particular solutions of laplace’s equations on polygons and new models involving mild singularities. Eng. Anal. Bound. Elem. 29(1), 59–75 (2005)

    Article  Google Scholar 

  23. Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)

    Article  MathSciNet  Google Scholar 

  25. Marin, L., Lesnic, D., Mantič, V.: Treatment of singularities in helmholtz-type equations using the boundary element method. J. Sound Vib. 278(1), 39–62 (2004)

    Article  MathSciNet  Google Scholar 

  26. Morin, P., Nochetto, R., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MathSciNet  Google Scholar 

  27. Nochetto, R.H., Otárola, E., Salgado, A.J.: A pde approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2014)

    Article  MathSciNet  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA, (1999). An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications

  29. Samko, S.G., Kilbas, A.A., Maričev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publ, Philadelphia (1993)

    Google Scholar 

  30. Schultz, W.W., Lee, N.Y., Boyd, J.P.: Chebyshev pseudospeetral method of viscous flows with corner singularities. J. Sci. Comput. 4, 1–24 (1989)

    Article  Google Scholar 

  31. Schumack, M.R., Schultz, W.W., Boyd, J.P.: Spectral method solution of the stokes equations on nonstaggered grids. J. Comput. Phys. 94(1), 30–58 (1991)

    Article  MathSciNet  Google Scholar 

  32. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  Google Scholar 

  33. Shen, J.: Efficient spectral-Galerkin methods III. Polar and cylindrical geometries. SIAM J. Sci. Comput. 18, 1583–1604 (1997)

    Article  MathSciNet  Google Scholar 

  34. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    Google Scholar 

  35. Shen, J., Wang, Y.: Müntz–Galerkin methods and applications to mixed Dirichlet–Neumann boundary value problems. SIAM J. Sci. Comput. 38(4), A2357–A2381 (2016)

    Article  Google Scholar 

  36. Sherman, A.H.: On newton-iterative methods for the solution of systems of nonlinear equations. SIAM J. Numer. Anal. 15(4), 755–771 (1978)

    Article  MathSciNet  Google Scholar 

  37. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc, Englewood Cliffs (1973)

    MATH  Google Scholar 

  38. Szego, G.: Orthogonal Polynomials, vol. 23 of Amer. In: Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI (1975)

  39. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257(Part A), 460–480 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Dedicated to Bernardo Cockburn on the occasion of his 60th birthday.

Sheng Chen is partially supported by the Foundation of Jiangsu Normal University (Grant No. 17XLR013), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. BK20181002), the National Natural Science Foundation for the Youth of China (Grant No. 11801235) and the Postdoctoral Science Foundation of China (Grant No. BX20180032). Jie Shen is partially supported by NSF Grants DMS-1620262, DMS-1720442 and AFOSR Grant FA9550-16-1-0102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Shen, J. Enriched Spectral Methods and Applications to Problems with Weakly Singular Solutions. J Sci Comput 77, 1468–1489 (2018). https://doi.org/10.1007/s10915-018-0862-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0862-z

Keywords

Mathematics Subject Classification

Navigation