Skip to main content
Log in

A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a posteriori error analysis for the space-time discretizations of linear parabolic integro-differential equation in a bounded convex polygonal or polyhedral domain. The piecewise linear finite element spaces are used for the space discretization, whereas the time discretization is based on the Crank–Nicolson method. The Ritz–Volterra reconstruction operator (IMA J Numer Anal 35:341–371, 2015), a generalization of elliptic reconstruction operator (SIAM J Numer Anal 41:1585–1594, 2003), is used in a crucial way to obtain optimal rate of convergence in space. Moreover, a quadratic (in time) space-time reconstruction operator is introduced to establish second order convergence in time. The proposed method uses nested finite element spaces and the standard energy technique to obtain optimal order error estimator in the \(L^{\infty }(L^2)\)-norm. Numerical experiments are performed to validate the optimality of the error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Akrivis, G., Makridakis, C., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bänsch, E., Karakatsani, F., Makridakis, C.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bänsch, E., Karakatsani, F., Makridakis, C.: The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations. Appl. Numer. Math. 67, 35–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74, 1117–1138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Capasso, V.: Asymptotic stability for an integro-differential reaction-diffusion system. J. Math. Anal. Appl. 103, 575–588 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolejsi, V., Ern, A., Vohralík, M.: A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51, 773–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Shih, T.: Finite Element Methods for Integro-Differential Equations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  10. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J. Numer. Anal. 32, 1729–1749 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux re-construction for the heat equation. SIAM J. Numer. Anal. 48, 198–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Habetler, G.J., Schiffman, R.L.: A finite difference method for analysing the compression of poro-viscoelasticity media. Computing 6, 342–348 (1970)

    Article  MATH  Google Scholar 

  15. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, Y.P., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28(4), 1047–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pani, A.K., Peterson, T.E.: Finite element methods with numerical quadrature for parabolic integrodifferential equations. SIAM J. Numer. Anal. 33(3), 1084–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pao, C.V.: Solution of a nonlinear integro-differential system arising in nuclear reactor dynamics. J. Math. Anal. Appl. 48, 470–492 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167, 223–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reddy, G.M.M., Sinha, R.K.: Ritz–Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations. IMA J. Numer. Anal. 35, 341–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reddy, G.M.M., Sinha, R.K.: On the Crank–Nicolson anisotropic a posteriori error analysis for parabolic integro-differential equations. Math. Comput. 85, 2365–2390 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reddy, G.M.M., Sinha, R.K.: The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations. Numer. Methods Partial Differ. Equ. 2016(32), 1309–1330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomée, V., Zhang, N.Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53(187), 121–139 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Verfürth, R.: A posteriori error estimates for non linear problems: \(L^r(0, t; L^p(\Omega ))\)-error estimates for finite element discretizations of parabolic equations. Math. Comput. 67, 1335–1360 (1998)

    Article  MATH  Google Scholar 

  29. Verfürth, R.: A posteriori error estimates for non linear problems: \(L^r(0, t;W^ {1, p}(\Omega ))\)-error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differ. Equ. 14, 487–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Verfürth, R.: A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40, 195–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yanik, E.G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12, 785–809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank both the referees for their valuable comments and suggestion which led to the improvement of this manuscript. G. Murali Mohan Reddy would like to thank FAPESP for the financial support received (Grant No. 2016/19648-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murali Mohan Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.M.M., Sinha, R.K. & Cuminato, J.A. A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations. J Sci Comput 79, 414–441 (2019). https://doi.org/10.1007/s10915-018-0860-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0860-1

Keywords

Navigation