Skip to main content
Log in

A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements Methods. Springer Series in Computational Mathematics. Springer, Berlin (1991)

    Book  Google Scholar 

  5. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  6. Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math. Comp. 75(254), 533–563 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comp. 86(306), 1643–1670 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam]

  9. Cockburn, B., Cui, J.: An analysis of HDG methods for the vorticity–velocity–pressure formulation of the Stokes problem in three dimensions. Math. Comp. 81(279), 1355–1368 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77(264), 1887–1916 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent HDG methods for Stokes flow by \(M\)-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comp. 86(306), 1609–1641 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. I. The Stokes system in two space dimensions. SIAM J. Numer. Anal. 43(4), 1627–1650 (2005)

    Article  MathSciNet  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. II. The Stokes system in three space dimensions. SIAM J. Numer. Anal. 43(4), 1651–1672 (2005)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47(2), 1092–1125 (2009)

    Article  MathSciNet  Google Scholar 

  18. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  19. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comp. 80(274), 723–760 (2011)

    Article  MathSciNet  Google Scholar 

  20. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  21. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp. 78(265), 1–24 (2009)

    Article  MathSciNet  Google Scholar 

  22. Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.): Discontinuous Galerkin Methods. Springer, Berlin Heidelberg (2000)

    MATH  Google Scholar 

  23. Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)

    Article  MathSciNet  Google Scholar 

  24. Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comp. 82(282), 651–671 (2013)

    Article  MathSciNet  Google Scholar 

  25. Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)

    Article  MathSciNet  Google Scholar 

  26. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

    Book  Google Scholar 

  27. Di Pietro, D., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  28. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Book  Google Scholar 

  29. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    MATH  Google Scholar 

  30. Ethier, C.R., Steinman, D.A.: Exact fully 3d navierstokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19(5), 369–375 (1994)

    Article  Google Scholar 

  31. Feng, X., Karakashian, O., Xing, Y. (eds.): Recent developments in discontinuous Galerkin finite element methods for partial differential equations, The IMA Volumes in Mathematics and its Applications, vol. 157. Springer, Cham (2014). 2012 John H. Barrett Memorial Lectures, selected papers from the workshop held at the University of Tennessee, Knoxville, May 9–11, 2012

  32. Fish, J., Belytschko, T.: A First Course in Finite Elements. Wiley, New York (2007)

    Book  Google Scholar 

  33. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)

    Article  MathSciNet  Google Scholar 

  34. Hansbo, P., Larson, M.G.: Piecewise divergence-free discontinuous Galerkin methods for Stokes flow. Commun. Numer. Methods Eng. 24(5), 355–366 (2008)

    Article  MathSciNet  Google Scholar 

  35. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications. Texts in Applied Mathematics, vol. 54. Springer, New York (2008)

    MATH  Google Scholar 

  36. Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)

    Article  MathSciNet  Google Scholar 

  37. Montlaur, A., Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids 57(9), 1071–1092 (2008)

    Article  MathSciNet  Google Scholar 

  38. Montlaur, A., Fernandez-Mendez, S., Peraire, J., Huerta, A.: Discontinuous Galerkin methods for the Navier–Stokes equations using solenoidal approximations. Int. J. Numer. Methods Fluids 64(5), 549–564 (2010)

    Article  MathSciNet  Google Scholar 

  39. Nguyen, N., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)

    Article  MathSciNet  Google Scholar 

  40. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  41. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  Google Scholar 

  42. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    Article  MathSciNet  Google Scholar 

  43. Oikawa, I.: Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67(2), 475–492 (2016)

    Article  MathSciNet  Google Scholar 

  44. Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  Google Scholar 

  45. Poya, R., Sevilla, R., Gil, A.J.: A unified approach for a posteriori high-order curved mesh generation using solid mechanics. Comput. Mech. 58(3), 457–490 (2016)

    Article  MathSciNet  Google Scholar 

  46. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    Article  MathSciNet  Google Scholar 

  47. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  Google Scholar 

  48. Sevilla, R., Giacomini, M., Karkoulias, A., Huerta, A.: A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 116(2), 91–116 (2018)

    Article  Google Scholar 

  49. Sevilla, R., Hassan, O., Morgan, K.: An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows. Comput. Methods Appl. Mech. Eng. 253, 15–27 (2013)

    Article  MathSciNet  Google Scholar 

  50. Sevilla, R., Huerta, A.: Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In: Schröder, J., Wriggers, P. (eds.) Advanced Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol. 566, pp. 105–129. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  51. Sevilla, R., Huerta, A.: HDG-NEFEM with degree adaptivity for Stokes flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0657-2

  52. Stenberg, R.: Some new families of finite elements for the Stokes equations. Numer. Math. 56(8), 827–838 (1990)

    Article  MathSciNet  Google Scholar 

  53. Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51, 361–374 (2013)

    Article  MathSciNet  Google Scholar 

  54. Zhai, Q., Zhang, R., Wang, X.: A hybridized weak galerkin finite element scheme for the Stokes equations. Sci. China Math. 58(11), 2455–2472 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Giacomini.

Additional information

This work was partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 675919 and the Spanish Ministry of Economy and Competitiveness (Grant number: DPI2017-85139-C2-2-R). The support of the Generalitat de Catalunya (Grant number: 2017SGR1278) is also gratefully acknowledged. Finally, Alexandros Karkoulias was supported by the European Education, Audiovisual and Culture Executive Agency (EACEA) under the Erasmus Mundus Joint Doctorate Simulation in Engineering and Entrepreneurship Development (SEED), FPA 2013-0043.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomini, M., Karkoulias, A., Sevilla, R. et al. A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor. J Sci Comput 77, 1679–1702 (2018). https://doi.org/10.1007/s10915-018-0855-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0855-y

Keywords

Mathematics Subject Classification

Navigation