Journal of Scientific Computing

, Volume 77, Issue 2, pp 885–910

A Double-Layer Reduced Model for Fault Flow on Slipping Domains with an Hybrid Finite Volume Scheme

• Alessio Fumagalli
• Isabelle Faille
Article

Abstract

In this work we are interested in single-phase flows in fractured porous media for underground processes. We focus our attention on domains where the presence of faults, with thickness several orders of magnitude smaller than other characteristic sizes, can allow one part of the domain to slide past to the other. We propose a mathematical scheme where a reduced model for the fault flows is employed yielding a problem of co-dimension one. The hybrid finite volume method is used to obtain the discretized problem, which uses two different meshes on each side of the fault. These two meshes can move with the corresponding domain, resulting in non-matching grids between the two parts of the fault. In an earlier paper a mathematical scheme was proposed where the numerical discretization considers the hybrid finite volume method. In this paper we focus on the well-posedness of the continuous problem, the convergence of the discretized problem, and we support the theoretical findings with several numerical tests.

Keywords

Porous media Reduced model Faults Finite volume Non-matching grids

Mathematics Subject Classification

76S05 65N08 86A60

Notes

Acknowledgements

The authors warmly thank Jérôme Jaffré and Jean E. Roberts for many fruitful discussions. They also wish to thank the anonymous reviewers for their valuable comments and suggestions, which allowed them to improve the quality of the paper.

References

1. 1.
Adler, P.M., Thovert, J.-F.: Fractures and Fracture Networks. Springer, Dordrecht (1999)
2. 2.
Adler, P.M., Thovert, J.-F., Mourzenko, V.V.: Fractured Porous Media. Oxford University Press, Oxford (2012)
3. 3.
Alboin, C., Jaffré, J., Roberts, JE., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pp. 13–24. Amer. Math. Soc., Providence, RI (2002)Google Scholar
4. 4.
Alboin, C., Jaffré, J., Roberts, J.E., Wang, X.: Domain Decomposition for Some Transmission Problems in Flow in Porous Media. Lecture Notes in Physics, vol. 552. Springer, Berlin (2000)
5. 5.
Amir, L., Kern, M., Martin, V., Roberts, J.E.: Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé. In: Proceeding of JANO 8, $$8^{{\rm th}}$$ Conference on Numerical Analysis and Optimization, December 2005 (2005)Google Scholar
6. 6.
Angot, P.: A model of fracture for elliptic problems with flux and solution jumps. Comptes Rendus Mathematique 337(6), 425–430 (2003)
7. 7.
Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. M2AN Math. Model. Numer. Anal. 43(2), 239–275 (2009)
8. 8.
Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, K., Matthew G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory (2013)Google Scholar
9. 9.
Bear, J., Tsang, C.-F., de Marsily, G.: Flow and Contaminant Transport in Fractured Rock. Academic Press, San Diego (1993)Google Scholar
10. 10.
Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)
11. 11.
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Computational Mathematics, vol. 15. Springer, Berlin (1991)
12. 12.
D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. Math. Model. Numer. Anal. 46(02), 465–489 (2012)
13. 13.
Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybird finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(02), 265–295 (2010)
14. 14.
Elyes, A., Jérôme, J., Roberts, J.E.: A 3-D reduced fracture model for two-phase flow in porous media with a global pressure formulation. In MAMERN VI, Pau, France (2015)Google Scholar
15. 15.
Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004)
16. 16.
Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)
17. 17.
Faille, I., Flauraud, E., Nataf, F., Pégaz-Fiornet, S., Schneider, F., Willien, F.: A New Fault Model in Geological Basin Modelling. Application of Finite Volume Scheme and Domain Decomposition Methods. Finite volumes for complex applications. III (Porquerolles, 2002), pp. 529–536. Hermes Sci. Publ, Paris (2002)Google Scholar
18. 18.
Faille, I., Fumagalli, A., Jaffré, J., Roberts, J.E.: Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults. Comput. Geosci. 20(2), 317–339 (2016)
19. 19.
Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners. In Sloot, P.M.A., Hoekstra, A.G., Kenneth Tan, C.J., Dongarra J.J. (eds.) Computational Science-ICCS 2002, vol. 2331. Lecture Notes in Computer Science, pp 632–641. Springer, Berlin (2002)Google Scholar
20. 20.
Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM Math. Model. Numer. Anal. 48, 1089–1116 (2014)
21. 21.
Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)
22. 22.
Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, Part C(0), 454–464. Computational Methods in Geologic CO2 Sequestration (2013)
23. 23.
Fumagalli, A., Scotti, A.: A reduced model for flow and transport in fractured porous media with non-matching grids. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, Jeremy, Tretyakov, Michael V. (eds.) Numerical Mathematics and Advanced Applications 2011, pp. 499–507. Springer, Berlin (2013)
24. 24.
Fumagalli, A., Scotti, A.: An efficient XFEM approximation of Darcy flows in arbitrarily fractured porous media. Oil Gas Sci. Technol.—Revue d’IFP Energies Nouvelles 69(4), 555–564 (2014)
25. 25.
Gong, B., Qin, G., Douglas, C., Yuan, S.: Detailed modeling of the complex fracture network of shale gas reservoirs. SPE Reserv. Eval. Eng. (2011)Google Scholar
26. 26.
Grospellier, G., Lelandais, B.: The arcane development framework. In: Proceedings of the 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ’09, pp. 4:1–4:11, New York, NY, USA. ACM (2009)Google Scholar
27. 27.
Jaffré, J., Martin, V., Roberts, J.E.: Generalized cell-centered finite volume methods for flow in porous media with faults. Finite volumes for complex applications. III (Porquerolles, 2002), pp. 343–350. Hermes Sci. Publ, Paris (2002)Google Scholar
28. 28.
Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)
29. 29.
Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), 227–236 (2004)
30. 30.
Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)
31. 31.
Nordbotten, J.M., Boon, W., Fumagalli, A., Keilegavlen, E.: Unified approach to discretization of flow in fractured porous media. Technical report. arXiv:1802.05961 [math.NA] (2018)
32. 32.
Quarteroni, Alfio, Valli, Alberto: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)
33. 33.
Scotti, A., Formaggia, L., Sottocasa, F.: Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN (2017)Google Scholar
34. 34.
Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with non-matching grids. Comput. Geosci. 16, 277–296 (2012)