Advertisement

Journal of Scientific Computing

, Volume 77, Issue 2, pp 1001–1029 | Cite as

Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations

  • Lingling Zhou
  • Yan Xu
Article
  • 130 Downloads

Abstract

In this paper, we focus on the theoretical analysis of the second and third order semi-implicit spectral deferred correction (SDC) time discretization with local discontinuous Galerkin (LDG) spatial discretization for the one-dimensional linear convection–diffusion equations. We mainly study the stability and error estimates of the corresponding fully discrete scheme. Based on the Picard integral equation, the SDC method is driven iteratively by either the explicit Euler method or the implicit Euler method. It is easy to implement for arbitrary order of accuracy. For the semi-implicit SDC scheme, the iteration and the left-most endpoint involved in the integral for the implicit part increase the difficulty of the theoretical analysis. To be more precise, the test functions are more complex and the energy equations are more difficult to construct, compared with the Runge–Kutta type semi-implicit schemes. Applying the energy techniques, we obtain both the second and third order semi-implicit SDC time discretization with LDG spatial discretization are stable provided the time step \(\tau \le \tau _{0}\), where the positive \(\tau _{0}\) depends on the diffusion and convection coefficients and is independent of the mesh size h. We then obtain the optimal error estimates for the corresponding fully discrete scheme under the condition \(\tau \le \tau _{0}\) with similar technique for stability analysis. Numerical examples are presented to illustrate our theoretical results.

Keywords

Spectral deferred correction Local discontinuous Galerkin Stability Error estimate Convection–diffusion equation 

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boscarino, S., Qiu, J.M., Russo, G.: Implicit–explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40, A787–A816 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  6. 6.
    Calvo, M.P., Frutos, J.D., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Christlieb, A., Ong, B., Qiu, J.M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4, 27–56 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feng, X.L., Tang, T., Yang, J.L.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier colocation spectral method for 3-D viscous Burger’s equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, R.H., Xia, Y.H., Xu, Y.: Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations. J. Comput. Phys. 338, 269–284 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer, New York (2008)zbMATHGoogle Scholar
  19. 19.
    Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45, 341–373 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transprot equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  22. 22.
    Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  23. 23.
    Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38, A2535–A2557 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, pp. 149–201. Birkhäuser, Besel (2009)Google Scholar
  25. 25.
    Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin method with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)MathSciNetGoogle Scholar
  27. 27.
    Wang, H.J., Wang, S.P., Shu, C.-W., Zhang, Q.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM Math. Model. Numer. Anal. 50, 1083–1105 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Xia, Y.H., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xia, Y.H.: A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selection. J. Comput. Phys. 280, 248–260 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for Kdv type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systerms of conservation laws. SIAM J. Numer. Anal. 44, 1703–1720 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations