Skip to main content
Log in

An Improved Eulerian Approach for the Finite Time Lyapunov Exponent

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determines the Jacobian of the map using finite differences. The new algorithm improves the original Eulerian formulation so that we first obtain partial differential equations for each component of the Jacobian and then solve these equations to obtain the required Jacobian. For periodic dynamical systems, based on the time doubling technique developed for computing the longtime flow map, we also propose a new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical examples will demonstrate that our new proposed approach is more accurate than the original one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Badas, M.G., Domenichini, F., Querzoli, G.: Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents. Meccania 52, 529–544 (2017)

    Article  Google Scholar 

  2. Candès, E.J., Ying, L.: Fast geodesics computation with the phase flow method. J. Comput. Phys. 220, 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardwell, B.M., Mohseni, K.: Vortex shedding over two-dimensional airfoil: where do the particles come from? AIAA J. 46, 545–547 (2008)

    Article  Google Scholar 

  4. Chavent, G., Cockburn, B.: The local projection p0 p1-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 23, 565–592 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13, 1464–1471 (2007)

    Article  Google Scholar 

  8. Garth, C., Li, G.S., Tricoche, X., Hansen, C.D., Hagen, H.: Visualization of Coherent Structures in Transient 2D Flows. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  9. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green, M.A., Rowley, C.W., Smiths, A.J.: Using hyperbolic Lagrangian coherent structures to investigate vortices in biospired fluid flows. Chaos 20, 017510 (2010)

    Article  MathSciNet  Google Scholar 

  11. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids A 13, 3368–3385 (2001)

    MathSciNet  Google Scholar 

  13. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuhn, A., Rossl, C., Weinkauf, T., Theisel, H.: A benchmark for evaluating FTLE computations. In: IEEE Pacific Visualization Symposium, pp. 121–128. IEEE Computer Society (2012)

  15. Lekien, F., Leonard, N.: Dynamically consistent Lagrangian coherent structures. In: Experimental Chaos: 8-th Experimental Chaos Conference, pp. 132–139 (2004)

  16. Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20, 017505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in \(n\)-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leung, S.: An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230, 3500–3524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leung, S.: The backward phase flow method for the Eulerian finite time Lyapunov exponent computations. Chaos 23, 043132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228, 2951–2977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lipinski, D., Mohseni, K.: Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol. 212, 2436–2447 (2009)

    Article  Google Scholar 

  22. Liu, X.D., Osher, S.J., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lukens, S., Yang, X., Fauci, L.: Using Lagrangian coherent structures to analyze fluid mixing by cillia. Chaos 20, 017511 (2010)

    Article  MathSciNet  Google Scholar 

  24. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qian, J., Leung, S.: A local level set method for paraxial multivalued geometric optics. SIAM J. Sci. Comput. 28, 206–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sapsis, T., Haller, G.: Inertial particle dynamics in a hurricane. J. Atmos. Sci. 66, 2481–2492 (2009)

    Article  Google Scholar 

  27. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  29. Tang, W., Chan, P.W., Haller, G.: Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong international airport. Chaos 20, 017502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, W., Peacock, T.: Lagrangian coherent structures and internal wave attractors. Chaos 20, 017508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. You, G., Leung, S.: VIALS: an Eulerian tool based on total variation and the level set method for studying dynamical systems. J. Comput. Phys. 266, 139–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. You, G., Leung, S.: Eulerian based interpolation schemes for flow map construction and line integral computation with applications to coherent structures extraction. J. Sci. Comput. 74, 70–96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. You, G., Wong, T., Leung, S.: Eulerian methods for visualizating continuous dynamical systems using Lyapunov exponents. SIAM J. Sci. Comput. 39(2), A415–A437 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of You was supported by the National Natural Science Foundation of China (No. 11701287) and the Natural Science Foundation of Jiangsu Province (No. BK20171071). The work of Leung was supported in part by the Hong Kong RGC Grants 16303114 and 16309316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiao You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, G., Leung, S. An Improved Eulerian Approach for the Finite Time Lyapunov Exponent. J Sci Comput 76, 1407–1435 (2018). https://doi.org/10.1007/s10915-018-0669-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0669-y

Keywords

Navigation