High-Order Perturbation of Surfaces Algorithms for the Simulation of Localized Surface Plasmon Resonances in Two Dimensions



The capability of simulating scattering returns of electromagnetic radiation from bounded obstacles is of overwhelming importance to scientists and engineers. Furthermore, such simulations must be of both surpassing accuracy and high fidelity for many applications of interest. High-Order Spectral methods deliver highly accurate simulations with a relatively small number of degrees of freedom, while interfacial formulations which utilize these discretizations have orders of magnitude smaller execution times and memory requirements. Among these, the High-Order Perturbation of Surfaces algorithms have proved to be a method of choice in layered media applications, and we display here how two of these-the Methods of Field Expansions and Transformed Field Expansions-extend to obstacles of bounded cross-section. In this contribution we provide not only a detailed prescription of the algorithms, but also validate the schemes and point out their benefits and shortcomings. With numerical experiments we show the remarkable efficiency, fidelity, and high-order accuracy one can achieve with implementations of these algorithms.


High-Order Spectral Methods Linear wave scattering Bounded obstacles High-Order Perturbation of Surfaces Methods 



D.P.N. gratefully acknowledges support from the National Science Foundation through Grant No. DMS-1522548.


  1. 1.
    Baker Jr., George A.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Bender, Carl M, Orszag, Steven A: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Co, New York (1978). International Series in Pure and Applied MathematicsMATHGoogle Scholar
  3. 3.
    Boyd, John P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola (2001)MATHGoogle Scholar
  4. 4.
    Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Am. A 10(6), 1168–1175 (1993)CrossRefGoogle Scholar
  5. 5.
    Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities. J. Opt. Soc. Am. A 10(11), 2307–2316 (1993)CrossRefGoogle Scholar
  6. 6.
    Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings. J. Opt. Soc. Am. A 10(12), 2551–2562 (1993)CrossRefGoogle Scholar
  7. 7.
    Bruno, Oscar P., Reitich, Fernando: Boundary-variation solutions for bounded-obstacle scattering problems in three dimensions. J. Acoust. Soc. Am. 104(5), 2579–2583 (1998)CrossRefGoogle Scholar
  8. 8.
    Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151 (1966)CrossRefGoogle Scholar
  9. 9.
    Coifman, R., Goldberg, M., Hrycak, T., Israeli, M., Rokhlin, V.: An improved operator expansion algorithm for direct and inverse scattering computations. Waves Random Media 9(3), 441–457 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)CrossRefMATHGoogle Scholar
  11. 11.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  12. 12.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, volume 9 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  13. 13.
    Enoch, S., Bonod, N.: Plasmonics: From Basics to Advanced Topics. Springer Series in Optical Sciences. Springer, New York (2012)CrossRefGoogle Scholar
  14. 14.
    El-Sayed, I., Huang, X., El-Sayed, M.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-egfr antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006)CrossRefGoogle Scholar
  15. 15.
    Evans, Lawrence C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)MATHGoogle Scholar
  16. 16.
    Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26Google Scholar
  17. 17.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, B., Nicholls, D.P.: Analyticity of Dirichlet–Neumann operators on Hölder and Lipschitz domains. SIAM J. Math. Anal. 37(1), 302–320 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods, volume 54 of Texts in Applied Mathematics. In: Algorithms, analysis, and applications. Springer, New York (2008)Google Scholar
  20. 20.
    Ihlenburg, Frank: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)CrossRefMATHGoogle Scholar
  21. 21.
    Johnson, Claes: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  22. 22.
    Knupp, P., Salari, K.: Verification of Computer Codes in Computational Science and Engineering. Chapman and Hall/CRC, Boca Raton (2003)MATHGoogle Scholar
  23. 23.
    LeVeque, Randall J.: Finite difference methods for ordinary and partial differential equations. In: Steady-state and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)Google Scholar
  24. 24.
    Liu, M., Guyot-Sionnest, P., Lee, T.-W., Gray, S.: Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys. Rev. B 76, 235428 (2007)CrossRefGoogle Scholar
  25. 25.
    Loo, C., Lowery, A., Halas, N., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5(4), 709–711 (2005)CrossRefGoogle Scholar
  26. 26.
    Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)Google Scholar
  27. 27.
    Martin, P.A.: Multiple scattering, volume 107 of Encyclopedia of Mathematics and its Applications. In: Interaction of time-harmonic waves with \(N\) obstacles. Cambridge University Press, Cambridge (2006)Google Scholar
  28. 28.
    Myroshnychenko, V., Carbo-Argibay, E., Pastoriza-Santos, I., Perez-Juste, J., Liz-Marzan, L., Garcia de Abajo, F.: Modeling the optical response of highly faceted metal nanoparticles with a fully 3d boundary element method. Adv. Mater. 20, 4288–4293 (2008)CrossRefGoogle Scholar
  29. 29.
    Milder, D. M.: An improved formalism for rough-surface scattering of acoustic and electromagnetic waves. In: Proceedings of SPIE—The International Society for Optical Engineering (San Diego, 1991), volume 1558, pp. 213–221. International Society for Optical Engineering, Bellingham (1991)Google Scholar
  30. 30.
    Milder, D. M.: An improved formalism for wave scattering from rough surfaces. J. Acoust. Soc. Am. 89(2), 529–541 (1991)Google Scholar
  31. 31.
    Milder, D. M.: An improved formalism for electromagnetic scattering from a perfectly conducting rough surface. Radio Sci. 31(6), 1369–1376 (1996)Google Scholar
  32. 32.
    Milder, D. M.: Role of the admittance operator in rough-surface scattering. J. Acoust. Soc. Am. 100(2), 759–768 (1996)Google Scholar
  33. 33.
    Myroshnychenko, V., Rodriguez-Fernandez, J., Pastoriza-Santos, I., Funston, A., Novo, C., Mulvaney, P., Liz-Marzan, L., Garcia de Abajo, J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)CrossRefGoogle Scholar
  34. 34.
    Milder, D. M., Sharp, H. Thomas: Efficient computation of rough surface scattering. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991), pp. 314–322. SIAM, Philadelphia (1991)Google Scholar
  35. 35.
    Milder, D. M., Sharp, H.Thomas: An improved formalism for rough surface scattering. ii: Numerical trials in three dimensions. J. Acoust. Soc. Am. 91(5), 2620–2626 (1992)Google Scholar
  36. 36.
    Novotny, L., Hecht, B.: Principles of Nano-Optics, 2nd edn. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  37. 37.
    Nicholls, D.P.: Three-dimensional acoustic scattering by layered media: a novel surface formulation with operator expansions implementation. Proc. R. Soc. Lond. A 468, 731–758 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Nicholls, D.P.: A method of field expansions for vector electromagnetic scattering by layered periodic crossed gratings. J. Opt. Soc. Am. A 32(5), 701–709 (2015)CrossRefGoogle Scholar
  39. 39.
    Nicholls, D.P.: On analyticity of linear waves scattered by a layered medium. J. Differ. Equ. 263(8), 5042–5089 (2017)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Nicholls, D.P., Nigam, N.: Exact non-reflecting boundary conditions on general domains. J. Comput. Phys. 194(1), 278–303 (2004)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Nicholls, D.P., Oh, S.-H., Johnson, T.W., Reitich, F.: Launching surface plasmon waves via vanishingly small periodic gratings. J. Opt. Soc. Am. A 33(3), 276–285 (2016)CrossRefGoogle Scholar
  42. 42.
    Nicholls, D.P., Reitich, F.: A new approach to analyticity of Dirichlet–Neumann operators. Proc. R. Soc. Edinb. Sect. A 131(6), 1411–1433 (2001)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Nicholls, D.P., Reitich, F.: Stability of high-order perturbative methods for the computation of Dirichlet–Neumann operators. J. Comput. Phys. 170(1), 276–298 (2001)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Nicholls, D.P., Reitich, F.: Analytic continuation of Dirichlet–Neumann operators. Numer. Math. 94(1), 107–146 (2003)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Nicholls, D.P., Reitich, F.: Shape deformations in rough surface scattering: cancellations, conditioning, and convergence. J. Opt. Soc. Am. A 21(4), 590–605 (2004)CrossRefGoogle Scholar
  46. 46.
    Nicholls, D.P., Reitich, F.: Shape deformations in rough surface scattering: improved algorithms. J. Opt. Soc. Am. A 21(4), 606–621 (2004)CrossRefGoogle Scholar
  47. 47.
    Nicholls, D.P., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28(4), 1398–1419 (2006)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Nicholls, D.P., Tammali, V.: A high-order perturbation of surfaces (hops) approach to Fokas integral equations: vector electromagnetic scattering by periodic crossed gratings. Appl. Numer. Methods 101, 1–17 (2016)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004)CrossRefGoogle Scholar
  50. 50.
    Petit, R. (ed.): Electromagnetic Theory of Gratings. Springer, Berlin (1980)Google Scholar
  51. 51.
    Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)CrossRefGoogle Scholar
  52. 52.
    Rayleigh, Lord: On the dynamical theory of gratings. Proc. R. Soc. Lond. A79, 399–416 (1907)CrossRefMATHGoogle Scholar
  53. 53.
    Rice, S.O.: Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 4, 351–378 (1951)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)Google Scholar
  55. 55.
    Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)CrossRefGoogle Scholar
  56. 56.
    Roache, P.J.: Code verification by the method of manufactured solutions. J. Fluids Eng. 124(1), 4–10 (2002)CrossRefGoogle Scholar
  57. 57.
    Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205(1), 131–156 (2005)CrossRefMATHGoogle Scholar
  58. 58.
    Reitich, F., Tamma, K.: State-of-the-art, trends, and directions in computational electromagnetics. CMES Comput. Model. Eng. Sci. 5(4), 287–294 (2004)MathSciNetMATHGoogle Scholar
  59. 59.
    Strikwerda, John C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2004)CrossRefMATHGoogle Scholar
  60. 60.
    Xu, H., Bjerneld, E., Käll, M., Börjesson, L.: Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations