Journal of Scientific Computing

, Volume 76, Issue 2, pp 1216–1251 | Cite as

Convergence of the MAC Scheme for the Stokes/Darcy Coupling Problem



In this paper, we extend the MAC scheme for Stokes problem to the Stokes/Darcy coupling problem. The interface conditions between two separate regions are discretized and well-incorporated into the MAC grid setting. We first perform the stability analysis of the scheme for the velocity in both Stokes and Darcy regions and establish the stability for the pressure in both regions by considering an analogue of discrete divergence problem. Following the similar analysis on stability, we perform the error estimates for the velocity and the pressure in both regions. The theoretical results show the first-order convergence of the scheme in discrete \(L^2\) norms for both velocity and the pressure in both regions. Moreover, in fluid region, the first-order convergence for the x-derivative of velocity component u and the y-derivative of velocity component v is also obtained in discrete \(L^2\) norms. However, numerical tests show one order better for the velocity in Stokes region and the pressure in Darcy region.


Stokes–Darcy flow MAC scheme Stability Convergence Finite difference method Staggered grids 



The work of M.-C. Lai was supported in part by Ministry of Science of Technology of Taiwan under research grant MOST-104-2115-M-009-014-MY3 while M.-C. Shiue was supported in part by the Grant MOST-104-2115-M-009-012-MY2. K.C. Ong was supported in part by NCTU Taiwan Elite Internship Program at National Chiao Tung University and NCTS.


  1. 1.
    Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11, 207–218 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Tlupova, S., Cortez, R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228, 158–179 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, Q.: Stable and convergent approximation of two-dimensional vector fields on unstructured meshes. J. Comput. Appl. Math. 307, 284–306 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chou, S.H.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comp. 66, 85–104 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cao, Y., Gunzburger, M., Hu, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comput. 83, 1617–1644 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Camano, J., Gatica, G.N., Oyarza, R., Ruiz-Baier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes–Darcy coupling. Comput. Methods Appl. Mech. Eng. 295, 362–395 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chidyagwai, P., Ladenheim, S., Szyld, D.: Constraint preconditioning for the coupled Stokes–Darcy system. SIAM J. Sci. Comput. 38, A668–A690 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chidyagwai, P., Riviere, B.: Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Res. 33, 92–105 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Visual Sci. 6, 93–103 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22, 315–426 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gatica, G., Oyarzua, R., Sayas, F.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comput. 80, 1911–1948 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127, 93–165 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Harlow, F.H., Welsh, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free interface. Phys. Fluids 8, 2181–2189 (1965)CrossRefGoogle Scholar
  17. 17.
    Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 650–571 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hessari, P.: Pseudospectral least squares method for Stokes–Darcy equations. SIAM J. Numer. Anal. 53, 1195–1213 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kanschat, G., Rivire, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, Z.: An augmented Cartesian grid method for Stokes–Darcy fluid–structure interactions. Int. J. Numer. Meth. Eng. 106, 556–575 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55(3), 1135–1158 (2017)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rui, H., Liu, W.: A two-grid block-centered finite difference method MAC scheme forDarcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53(4), 1941–1962 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rui, H., Pan, H.: A block-centered finite difference method for the Darcy–Forchheimer. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rui, H., Pan, H.: A block-centered finite difference method for slightly compressible Darcy–Forchheimer flow in porous media. J. Sci. Comput. 73(1), 70–92 (2017)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Shin, D., Strikwerda, J.C.: Inf-sup conditions for finite-difference approximations of the Stokes equations. J. Aust. Math. Soc. Ser. B 39, 121–134 (1997)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257, 126–142 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations