Advertisement

New Multi-implicit Space–Time Spectral Element Methods for Advection–Diffusion–Reaction Problems

Article
  • 82 Downloads

Abstract

Novel multi-implicit space–time spectral element methods are described for approximating solutions to advection–diffusion–reaction problems characterized by multiple time scales. The new methods are spectrally accurate in space and time and they are designed to be easy to implement and robust. In other words, given an existing stable low order operator split method for approximating solutions to PDEs exhibiting multiple scales, the algorithms described in this article enable one to easily extend a low order method to be a robust space–time spectrally accurate method. In space, two spectrally accurate advective flux reconstructions are proposed: extended element-wise flux reconstruction and non-extended element-wise flux reconstruction. In time, for the hyperbolic term(s), a low-order explicit I-stable building block time integration scheme is introduced in order to obtain a stable and efficient building block for the spectrally accurate space–time scheme. In this article, multiple spectrally accurate space discretization strategies, and multiple spectrally accurate time discretization strategies are compared to one another. It is found that all methods described are spectrally accurate with each method having distinguishing properties.

Keywords

Space–time Operator splitting Coupling strategy Multiple time scales Spectral accuracy 

Mathematics Subject Classification

65B05 65M70 

Notes

Acknowledgements

This work and the authors were supported in part by the National Science Foundation under Contract DMS 1418983.

References

  1. 1.
    Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Comput. Fluids 98, 152–163 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Almgren, A.S., Aspden, A.J., Bell, J.B., Minion, M.L.: On the use of higher-order projection methods for incompressible turbulent flow. SIAM J. Sci. Comput. 35(1), B25–B42 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bao, W., Jin, S.: Weakly compressible high-order i-stable central difference schemes for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 190(37), 5009–5026 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bourlioux, A., Layton, A.T., Minion, M.L.: High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 189(2), 651–675 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bourlioux, A., Majda, A.J.: An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion. Combust. Theory Model. 4(2), 189–210 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bruno, O.P., Cubillos, M.: Higher-order in time “quasi-unconditionally stable” ADI solvers for the compressible Navier–Stokes equations in 2D and 3D curvilinear domains. J. Comput. Phys. 307, 476–495 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cockburn, B.B., Karniadakis, G., Shu, C.W. (eds.): Discontinuous Galerkin methods: theory, computation, and applications. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000)Google Scholar
  10. 10.
    Cole, J.T., Musslimani, Z.H.: Time-dependent spectral renormalization method. Phys. D 358, 15–24 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fambri, F., Dumbser, M.: Spectral semi-implicit and space–time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016).  https://doi.org/10.1016/j.apnum.2016.07.014 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1–2), 105–128 (2005)MathSciNetMATHGoogle Scholar
  14. 14.
    Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84(296), 2743–2761 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Grooss, J., Hesthaven, J.S.: A level set discontinuous galerkin method for free surface flows. Comput. Methods Appl. Mech. Eng. 195(25), 3406–3429 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006).  https://doi.org/10.1016/j.cma.2005.10.010 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4079 (2007)Google Scholar
  18. 18.
    Jacobs, G.B., Kopriva, D.A., Mashayek, F.: A conservative isothermal wall boundary condition for the compressible Navier–Stokes equations. J. Sci. Comput. 30(2), 177–192 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kadioglu, S.Y., Klein, R., Minion, M.L.: A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics. J. Comput. Phys. 227(3), 2012–2043 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Scientific Computation. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Koziol, A.S., Pudykiewicz, J.A.: Global-scale environmental transport of persistent organic pollutants. Chemosphere 45(8), 1181–1200 (2001)CrossRefGoogle Scholar
  25. 25.
    Kwatra, N., Su, J., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228(11), 4146–4161 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lalanne, B., Rueda Villegas, L., Tanguy, S., Risso, F.: On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289–307 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Layton, A.T.: On the choice of correctors for semi-implicit Picard deferred correction methods. Appl. Numer. Math. 58(6), 845–858 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Layton, A.T.: On the efficiency of spectral deferred correction methods for time-dependent partial differential equations. Appl. Numer. Math. 59(7), 1629–1643 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Liu, Y., Shu, C.W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26(5), 633–656 (2008)MathSciNetMATHGoogle Scholar
  30. 30.
    Luo, H., Xia, Y., Spiegel, S., Nourgaliev, R., Jiang, Z.: A reconstructed discontinuous Galerkin method based on a hierarchical WENO reconstruction for compressible flows on tetrahedral grids. J. Comput. Phys. 236, 477–492 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections (Workshop on innovative time integrators for PDEs). Appl. Numer. Math. 48(3–4), 369–387 (2004)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Nonaka, A., Bell, J., Day, M., Gilet, C., Almgren, A., Minion, M.: A deferred correction coupling strategy for low mach number flow with complex chemistry. Combust. Theory Model. 16(6), 1053–1088 (2012)CrossRefGoogle Scholar
  33. 33.
    Pazner, W.E., Nonaka, A., Bell, J.B., Day, M.S., Minion, M.L.: A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry. Combust. Theory Model. 20(3), 521–547 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pei, C., Sussman, M., Hussaini, M.Y.: A space-time discontinuous Galerkin spectral element method for nonlinear hyperbolic problems. Int. J. Comput. Methods (2018) (accepted)Google Scholar
  35. 35.
    Pei, C., Sussman, M., Hussaini, M.Y.: A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete Contin. Dyn. Syst. Ser. B (2017).  https://doi.org/10.3934/dcdsb.2017216
  36. 36.
    Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Sollie, W.E.H., Bokhove, O., van der Vegt, J.J.W.: Space–time discontinuous Galerkin finite element method for two-fluid flows. J. Comput. Phys. 230(3), 789–817 (2011)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Temam, R.: On the approximation of the solution of Navier–Stokes equations by the fractional steps method ii. Arch. Ration. Mech. Anal. 32, 377–385 (1969)CrossRefGoogle Scholar
  40. 40.
    van der Vegt, J.J.W., Sudirham, J.J.: A space–time discontinuous Galerkin method for the time-dependent Oseen equations. Appl. Numer. Math. 58(12), 1892–1917 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chaoxu Pei
    • 1
  • Mark Sussman
    • 1
  • M. Yousuff Hussaini
    • 1
  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations