Advertisement

Journal of Scientific Computing

, Volume 75, Issue 2, pp 1128–1155 | Cite as

Entropy Stable Schemes For Ten-Moment Gaussian Closure Equations

  • Chhanda Sen
  • Harish Kumar
Article

Abstract

In this article, we propose high order, semi-discrete, entropy stable, finite difference schemes for Ten-Moment Gaussian Closure equations. The crucial components of these schemes are an entropy conservative flux and suitable high order entropy dissipative operators to ensure entropy stability. We design two numerical fluxes, one is approximately entropy conservative, and another is entropy conservative flux. For the construction of appropriate entropy dissipative operators, we also derive entropy scaled right eigenvectors. This is used for sign preserving reconstruction of scaled entropy variables, which results in second and third order entropy stable schemes. We also extend these schemes to a plasma flow model with source term. Several numerical results are presented for homogeneous and non-homogeneous cases to demonstrate stability and performance of these schemes.

Keywords

Ten-Moment Gaussian closure equations Symmetrization Entropy stability Finite difference scheme 

Mathematics Subject Classification

65M08 65M12 

References

  1. 1.
    Barth, T.J.: Numerical methods for gas-dynamics systems on unstructured meshes. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics of Conservation Laws. Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer, Berlin (1999)CrossRefGoogle Scholar
  2. 2.
    Berthon, C.: Numerical approximations of the 10-moment Gaussian-closure. Math. Comput. 75(256), 1809–1831 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berthon, C., Desveaux, V.: An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite 11, 1–39 (2014)MathSciNetGoogle Scholar
  4. 4.
    Berthon, C., Dubroca, B., Sangam, A.: An entropy preserving relaxation scheme for the Ten-Moments equations with source terms. Commun. Math. Sci. 13(8), 2119–2154 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brown, S.L.,Roe, P.L., Groth, C.P.: Numerical solution of a 10-moment model for nonequilibrium gasdynamics. In: 12th AIAA Computational Fluid Dynamics Conference (1995)Google Scholar
  7. 7.
    Dubroca, B., Tchong, M., Charrier, P., Tikhonchuk, V.T., Morreeuw, J.P.: Magnetic field generation in plasmas due to anisotropic laser heating. Phys. Plasm. 11, 3830–3839 (2004)CrossRefGoogle Scholar
  8. 8.
    Farzad Ismail, R., Philip, L.: Affordable, entropy-consistent euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fjordholm, U.S.: High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. Diss. No. 21025, Ph.D. Thesis, ETH Zurich (2013)Google Scholar
  12. 12.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hakim, A.: Extended MHD modelling with ten-moment equations. J. Fusion Energy 27, 36–43 (2008)CrossRefGoogle Scholar
  14. 14.
    Johnson, E.A.: Gaussian-Moment relaxation closures for verifiable numerical simulation of fast magnetic reconnection in plasma. Ph.D. Thesis, UW-Madison (2011)Google Scholar
  15. 15.
    LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Meena, A.K., Kumar, H.: A robust MUSCL scheme for ten-moment Gaussian closure equations with source terms. SubmittedGoogle Scholar
  19. 19.
    Meena, A.K., Kumar, H., Chnadrashekar, P.: Positivity-preserving high-order discontinuous Galerkin schemes for ten-moment Gaussian closure equations. J. Comput. Phys. 339, 370–395 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ray, D., Chandrashekar, P., Fjordholm, U.S., Mishra, S.: Entropy stable scheme on two-dimensional unstructured grids for Euler equations. Commun. Comput. Phys. 19, 1111–1140 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sangam, A., Morreeuw, J.P., Tikhonchuk, V.T.: Anisotropic instability in a laser heated plasma. Phys. Plasm. 14, 053111 (2007)CrossRefGoogle Scholar
  22. 22.
    Sangam, A.: An HLLC scheme for ten-moments approximation coupled with magnetic field. Int. J. Comput. Sci. Math. 2, 73–109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 14, 1073–1084 (1988)zbMATHGoogle Scholar
  24. 24.
    Struchtrup, H., Torrilhon, M.: Regularization of grad’s 13-moment-equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp. 49, 91–103 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Act. Numer. 12, 451–512 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsIIT DelhiHauz KhasIndia

Personalised recommendations