Skip to main content
Log in

Fast Iterative Adaptive Multi-quadric Radial Basis Function Method for Edges Detection of Piecewise Functions—I: Uniform Mesh

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Jung et al. (Appl Numer Math 61:77–91, 2011), an iterative adaptive multi-quadric radial basis function (IAMQ-RBF) method has been developed for edges detection of the piecewise analytical functions. For a uniformly spaced mesh, the perturbed Toeplitz matrices, which are modified by those columns where the shape parameters are reset to zero due to the appearance of edges at the corresponding locations, are created. Its inverse must be recomputed at each iterative step, which incurs a heavy \(O(n^3)\) computational cost. To overcome this issue of efficiency, we develop a fast direct solver (IAMQ-RBF-Fast) to reformulate the perturbed Toeplitz system into two Toeplitz systems and a small linear system via the Sherman–Morrison–Woodbury formula. The \(O(n^2)\) Levinson–Durbin recursive algorithm that employed Yule–Walker algorithm is used to find the inverse of the Toeplitz matrix fast. Several classical benchmark examples show that the IAMQ-RBF-Fast based edges detection method can be at least three times faster than the original IAMQ-RBF based one. And it can capture an edge with fewer grid points than the multi-resolution analysis (Harten in J Comput Phys 49:357–393, 1983) and just as good as if not better than the L1PA method (Denker and Gelb in SIAM J Sci Comput 39(2):A559–A592, 2017). Preliminary results in the density solution of the 1D Mach 3 extended shock–density wave interaction problem solved by the hybrid compact-WENO finite difference scheme with the IAMQ-RBF-Fast based shocks detection method demonstrating an excellent performance in term of speed and accuracy, are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Available for download from USC Signal and Image Processing Institute Data base [40].

References

  1. Archibald, R., Gelb, A., Platte, R.B.: Image reconstruction from undersampled Fourier data using the polynomial annihilation transform. J. Sci. Comput. 67, 432–452 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3101–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.D., Dyn, N.: Spectral convergence of multiquadric interpolation. Proc. Edinb. Math. Soc. 36, 319–333 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  6. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH, pp. 67–76 (2001)

  7. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chao, J., Haselbacher, A., Balachandar, S.: A massively parallel multi-block hybrid compact-WENO scheme for compressible flows. J. Comput. Phys. 228(19), 7473–7491 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204(2), 209–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224, 970–991 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Denker, D., Gelb, A.: Edge detection of piecewise smooth functions from undersampled Fourier data using variance signatures. SIAM J. Sci. Comput. 39(2), A559–A592 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), 691–711 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–83 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Goldsten, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  18. Gao, Z., Don, W.S.: Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351–371 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64, 1557–1576 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu, M.: Stable and efficient algorithms for structured systems of linear equations. SIAM J. Matrix Anal. Appl. 19, 279–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Bojanczyk, A., Cybenko, G. (eds.) Linear Algebra for Signal Processing (The IMA Volumes in Mathematics and Its Applications), vol. 69, pp. 63–81. Springer, New York (1995)

    Google Scholar 

  23. Heinig, G., Rost, K.: Fast algorithms for Toeplitz and Hankel matrices. Linear Algebra Appl. 435, 1–59 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jung, J.-H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jung, J.-H., Durante, V.: An iterative multiquadric radial basis function method for the detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jung, J.-H., Gottlieb, S., Kim, S.O.: Iterative adaptive RBF methods for detection of edges in two-dimensional functions. Appl. Numer. Math. 61, 77–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kansa, E.J.: Muliquadrics—a scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39, 123–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kansa, E.J.: Exact explicit time integration of hyperbolic partial differential equations with mesh free radial basis functions. Eng. Anal. Bound. Elem. 31, 577–585 (2007)

    Article  MATH  Google Scholar 

  31. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl. 24, 121–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70(1), 94–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Methods Fluids 53(4), 531–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trench, W.: An algorithm for the inversion of finite Toeplitz matrices. SIAM J. Appl. Math. 12, 515–522 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  40. http://sipi.usc.edu/database/database.php?volume=misc

  41. Vasilyev, O., Lund, T., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146(1), 82–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xi, Y., Xia, J., Cauley, S., Balakrishnan, V.: Superfast and stable structured solvers for Toeplitz least squares via randomized sampling. SIAM J. Matrix Anal. Appl. 35(1), 44–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xia, J., Xi, Y., Gu, M.: A superfast structured solver for Toeplitz linear systems via randomized sampling. SIAM J. Matrix Anal. Appl. 33(3), 837–858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yee, P.V., Haykin, S.: Regularized Radial Basis Function Networks: Theory and Applications. Wiley, New York (2001)

    Google Scholar 

  45. Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Math. Anal. 33, 946–958 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, Q.Q., Gao, Z., Don, W.S., Lv, X.Q.: Well-balanced hybrid compact-WENO schemes for shallow water equations. Appl. Numer. Math. 112, 65–78 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Jianlin Xia for valuable discussion on the superfast methods for solving the Toeplitz matrix, and Prof. Tom Goldstein for sharing the codes of the Split Bregman method for reconstructing images from a subset of Fourier coefficients using total-variation regularization. The authors would like to acknowledge the funding support of this research by National Science and Technology Major Project (J-GFZX020101010.4), Shandong Provincial Natural Science Foundation (ZR2017MA016), National Natural Science Foundation of China (41306002) and Fundamental Research Funds for the Central Universities (201562012). The author (Don) also likes to thank the Ocean University of China for providing the startup fund (201712011) that is used in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Appendices

Appendix A: Brief Description of the L1PA Method

The L1PA method is used to determine edges from regularized reconstruction using the variance signature. Given the (noisy) Fourier coefficients of a piecewise smooth function from the set \( \hat{\mathbf {T}}_q = \hat{\mathbf {F}}\cup \hat{\mathbf {R}}_q \), where \( \hat{\mathbf {F}} = \{\hat{f}_k:~-\beta N\le k \le \beta N\} \) with \( 0 \le \beta \le 1 \), and \( \hat{\mathbf {R}}_q \) is \( \zeta (\gamma -\beta )(2N+1) \) randomly selected coefficients from \( \hat{f}_k, |k|>\beta N \), \( q = 1,\ldots ,Q \). Here, we set \( \beta = 0.3, \gamma = 0.95, \zeta = 0.5, Q = 30 \) for each test.

For each subsampled set \( \hat{\mathbf {T}}_q \), we reconstruct f on a set of uniform grid points \( x_j, j = -N,\ldots ,N \) as

$$\begin{aligned} \vec {f}_q = {\mathrm {argmin}}_{\vec {u}} \left| \left| F_q\vec {u} - \vec {\hat{f}}_q\right| \right| _2^2 + \lambda ||{\mathbf {P}}^{p}\vec {u}||_1, \end{aligned}$$

which can be solved efficiently by the split Bregman algorithm [17]. Here \(\vec {\hat{f}}_q\) is vector of Fourier coefficients formed from the subsampled set \( \hat{\mathbf {T}}_q\), and \( F_q \) is the discrete Fourier transform generating the coefficients to match \( \vec {\hat{f}}_q \). The polynomial annihilation transform \( {\mathbf {P}}^{p} \), is used as a sparsifying operator in the penalty term. Here we choose \( p = 2 \). The variance is calculated as

$$\begin{aligned} \vec {v}({\mathbf {Q}})_j = \frac{1}{Q}\sum _{q=1}^{Q}\left( \vec {f_{q}}_{j} - \frac{1}{Q}\sum _{q=1}^{Q}\vec {f_{q}}_{j}\right) ^2, \quad j = 1,\ldots , 2N+1. \end{aligned}$$

Each element in \(\vec {v}({\mathbf {Q}})\) differs in convergence properties only within each jump region, that is, the convergence is similar in smooth regions. Using this variance signature, edges detection algorithm is developed for piecewise smooth functions (For details, see [1, 13] and references therein).

Appendix B: List of Parameters

Here, we list what we considered to be optimized settings of parameters that are used in the IAMQ-RBF-Fast method, MR analysis and L1PA method in Table 3 for 1D problems, Table 4 for 2D images and Table 5 for noisy image.

Table 3 The corresponding parameters for the IAMQ-RBF-Fast method, MR analysis and L1PA method for piecewise linear function and 1D Euler equations
Table 4 The corresponding parameters for the IAMQ-RBF-Fast method, MR analysis and L1PA method for 2D images
Table 5 The corresponding parameters for noisy images with different \( \omega \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Don, W.S., Wang, BS. & Gao, Z. Fast Iterative Adaptive Multi-quadric Radial Basis Function Method for Edges Detection of Piecewise Functions—I: Uniform Mesh. J Sci Comput 75, 1016–1039 (2018). https://doi.org/10.1007/s10915-017-0572-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0572-y

Keywords

Navigation