Journal of Scientific Computing

, Volume 75, Issue 2, pp 762–781 | Cite as

Integral Equation Formulation of the Biharmonic Dirichlet Problem

  • M. Rachh
  • T. Askham


We present a novel integral representation for the biharmonic Dirichlet problem. To obtain the representation, the Dirichlet problem is first converted into a related Stokes problem for which the Sherman–Lauricella integral representation can be used. Not all potentials for the Dirichlet problem correspond to a potential for Stokes flow, and vice-versa, but we show that the integral representation can be augmented and modified to handle either simply or multiply connected domains. The resulting integral representation has a kernel which behaves better on domains with high curvature than existing representations. Thus, this representation results in more robust computational methods for the solution of the Dirichlet problem of the biharmonic equation and we demonstrate this with several numerical examples.


Integral equations Biharmonic Dirichlet Multiply connected 

Mathematics Subject Classification

31A10 31A30 65R20 65N99 



The authors would like to thank Leslie Greengard for suggesting this problem and both Leslie Greengard and Shidong Jiang for many useful discussions.


  1. 1.
    Askham, T., Cerfon, A.: An adaptive fast multipole accelerated Poisson solver for complex geometries. J. Comput. Phys. (2017). doi: 10.1016/
  2. 2.
    Bremer, J.: On the Nyström discretization of integral equations on planar curves with corners. Appl. Comput. Harmon. Anal. 32(1), 45–64 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229(22), 8259–8280 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Epstein, C.L., O’Neil, M.: Smoothed corners and scattered waves. SIAM J. Sci. Comput. 38(5), A2665–A2698 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Farkas, P.: Mathematical foundations for fast methods for the biharmonic equation. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), The University of Chicago (1989)Google Scholar
  7. 7.
    Goursat, E.: Sur l’equation \(\varDelta \varDelta \)u = 0. Bull. Soc. Math. Fr. 26, 236–237 (1898)Google Scholar
  8. 8.
    Greengard, L., Kropinski, M.C., Mayo, A.: Integral equation methods for Stokes flow and isotropic elasticity in the plane. J. Comput. Phys. 125(2), 403–414 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guenther, R., Lee, J.: Partial Differential Equations of Mathematical Physics and Integral Equations. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  11. 11.
    Jiang, S., Ren, B., Tsuji, P., Ying, L.: Second kind integral equations for the first kind Dirichlet problem of the biharmonic equation in three dimensions. J. Comput. Phys. 230(19), 7488–7501 (2011). doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Klöckner, A., Barnett, A., Greengard, L., ONeil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kress, R.: Linear Integral Equations. Applied Mathematical Sciences. Springer, New York (1999)CrossRefGoogle Scholar
  14. 14.
    Mikhlin, S.G., Armstrong, A.H.: Integral Equations and Their Applications to Certain Problems in Mechanics. Mathematical Physics and Technology. Pergamon Press (1957)Google Scholar
  15. 15.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Netherlands (1977)CrossRefGoogle Scholar
  16. 16.
    Power, H.: The completed double layer boundary integral equation method for two-dimensional Stokes flow. IMA J. Appl. Math. 51(2), 123–145 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Power, H., Miranda, G.: Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape. SIAM J. Appl. Math. 47(4), 689–698 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for quadrature by expansion I: globally valid expansions. J. Comput. Phys. 345, 706–731 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stein, D.B., Guy, R.D., Thomases, B.: Immersed boundary smooth extension: a high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods. J. Comput. Phys. 304, 252–274 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Applied Mathematics ProgramYale UniversityNew HavenUSA
  2. 2.Department of Applied MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations