Journal of Scientific Computing

, Volume 74, Issue 2, pp 1163–1187 | Cite as

Application of the Laminar Navier–Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics



Pathfinding problems consist in determining the optimal shortest path, or at least one path, between two points in the space. In this paper, we propose a particular approach, based on methods used in computational fluid dynamics, that intends to solve such problems. In particular, we reformulate pathfinding problems as the motion of a viscous fluid via the use of the laminar Navier–Stokes equations completed with suitable boundary conditions corresponding to some characteristics of the considered problem: position of the initial and final points, a-priori information of the terrain, One-way routes and dynamic spatial configuration. Then, we propose and validate a numerical implementation of this methodology by using Comsol Multiphysics (i.e., a finite element methods software) and by considering various experiments. We compare the obtained results with those returned by a classical pathfinding algorithm. Finally, we perform a sensitivity analysis of the proposed algorithms with respect to some key parameters.


Pathfinding Computational fluid dynamics Comsol Multiphysics Spatial constraints Artificial intelligence 


  1. 1.
    Amutha, B., Ponnavaikko, M.: Location update accuracy in human tracking system using zigbee modules. Int. J. Comput. Sci. Inf. Secur. 6(2), 322–331 (2009)Google Scholar
  2. 2.
    Arvo, J., Kirk, D.: Fast ray tracing by ray classification. SIGGRAPH Comput. Graph. 21(4), 55–64 (1987)CrossRefGoogle Scholar
  3. 3.
    Batchelor G (2000) An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511800955 (Cambridge Books Online)
  4. 4.
    Bathe, K.: Computational Fluid and Solid Mechanics. Elsevier Science (2001).
  5. 5.
    Bretti, G., Natalini, R.: Piccoli B (2007) A fluid-dynamic traffic model on road networks. Arch. Comput. Methods Eng. 14(2), 139–172 (2007). doi: 10.1007/s11831-007-9004-8 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Burns, E.A., Hatem, M., Leighton, M.J., Ruml, W.: Implementing fast heuristic search code. In: Borrajo, D., Felner, A., Korf, R.E., Likhachev, M., Lpez, C.L., Ruml, W., Sturtevant, N.R. (eds.) SOCS. AAAI Press, Palo Alto (2012)Google Scholar
  7. 7.
    Calvo, C., Villacorta-Atienza, J., Mironov, V., Gallego, V., Makarov, V.: Waves in isotropic totalistic cellular automata: application to real-time robot navigation. Adv. Complex Syst. 19(4), 1650012–1650018 (2016). doi: 10.1142/S0219525916500120 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Lydia, W., Kavraki, E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. Intelligent Robotics and Autonomous Agents series. MIT Press, Cambridge (2005)MATHGoogle Scholar
  9. 9.
    Chrpa, L., Novak, P.: Dynamic Trajectory Replanning for Unmanned Aircrafts Supporting Tactical Missions in Urban Environments. Holonic and Multi-Agent Systems for Manufacturing. Springer, Berlin (2011)Google Scholar
  10. 10.
    Ciarlet, P., Lions, J.: Handbook of Numerical Analysis: Numerical methods for fluids (pt. 3). Handbook of Numerical Analysis. North-Holland (1990).
  11. 11.
    Connolly, C., Burns, J., Weiss, R.: Path planning using laplace’s equation. In: 1990 IEEE International Conference on Robotics and Automation, 1990. Proceedings, vol. 3, pp. 2102–2106 (1990)Google Scholar
  12. 12.
    Connor, D.: Integrating Planning and Control for Constrained Dynamical Systems. PhD., University of Pennsylvania (2007)Google Scholar
  13. 13.
    Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)MathSciNetMATHGoogle Scholar
  14. 14.
    Dean, W.: Lxxii. the stream-line motion of fluid in a curved pipe (second paper). Lond Edinb. Dublin Philos. Mag. J. Sci. 5(30), 673–695 (1928). doi: 10.1080/14786440408564513 CrossRefGoogle Scholar
  15. 15.
    Dickmann, D.: On the Near Field Mean Flow Structure of Transverse Jets Issuing Into a Supersonic Freestream. University of Texas at Arlington (2007).
  16. 16.
    Dijkstra, E.: A Short Introduction to the Art of Programming. Techn. Hogeschool, Eindhoven (1971)Google Scholar
  17. 17.
    Eberly, D.: 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. CRC Press, Boca Raton (2006)Google Scholar
  18. 18.
    Fay, J.: Introduction to Fluid Mechanics. MIT Press (1994).
  19. 19.
    Fuerstman, M., Deschatelets, P., Kane, R., Schwartz, A., Kenis, P., Deutch, J., Whitesides, G.: Solving mazes using microfluidic networks. Langmuir 19(11), 4714–4722 (2003). doi: 10.1021/la030054x CrossRefGoogle Scholar
  20. 20.
    Girod, B., Greiner, G., Niemann, H.: Principles of 3D Image Analysis and Synthesis. The Springer International Series in Engineering and Computer Science. Springer, US (2013).
  21. 21.
    Glowinski, R., Neittaanmäki, P.: Partial Differential Equations: Modelling and Numerical Simulation. Computational Methods in Applied Sciences. Springer, Netherlands (2008).
  22. 22.
    Hertzog, D., Ivorra, B., Mohammadi, B., Bakajin, O., Santiago, J.: Optimization of a microfluidic mixer for studying protein folding kinetics. Anal. Chem. 78(13), 4299–4306 (2006). doi: 10.1021/ac051903j CrossRefGoogle Scholar
  23. 23.
    Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible navierstokes equations. Int. J. Numer. Methods Fluids 22(5), 325–352 (1996)CrossRefMATHGoogle Scholar
  24. 24.
    Hunt, B., Lipsman, R., Rosenberg, J.: A Guide to MATLAB: For Beginners and Experienced Users. Cambridge University Press (2001).
  25. 25.
    Hysing, J., Turek, S.: Evaluation of commercial and academic cfd codes for a two-phase flow benchmark test case. Int. J. Comput. Sci. Eng. 10(4), 387–394 (2015)CrossRefGoogle Scholar
  26. 26.
    Infante, J.A., Ivorra, B., Ramos, A., Rey, J.: On the modelling and simulation of high pressure processes and inactivation of enzymes in food engineering. Math. Models Methods Appl. Sci. 19(12), 2203–2229 (2009). doi: 10.1142/S0218202509004091 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Isebe, D., Azerad, P., Bouchette, F., Ivorra, B.: Mohammadi B (2008) Shape optimization of geotextile tubes for sandy beach protection. Int. J. Numer. Methods Eng. 74(8), 1262–1277 (2008). doi: 10.1002/nme.2209 CrossRefMATHGoogle Scholar
  28. 28.
    Ivorra, B., Hertzog, D., Mohammadi, B., Santiago, J.: Semi-deterministic and genetic algorithms for global optimization of microfluidic protein-folding devices. Int. J. Numer. Methods Eng. 66(2), 19–333 (2006). doi: 10.1002/nme.1562 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ivorra, B., Redondo, J., Santiago, J., Ortigosa, P., Ramos, A.: Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Phys. Fluids 25(3), 032001 (2013). doi: 10.1063/1.4793612 CrossRefMATHGoogle Scholar
  30. 30.
    Johnson, R.: Handbook of Fluid Dynamics. Handbook Series for Mechanical Engineering. Taylor & Francis, Oxfordshire (1998)Google Scholar
  31. 31.
    Katevas, N.: Mobile Robotics in Healthcare. Assistive technology research series. IOS Press (2001).
  32. 32.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  33. 33.
    Koenig, S., Likhachev, M.: D*lite. In: Eighteenth National Conference on Artificial Intelligence, pp. 476–483. American Association for Artificial Intelligence (2002)Google Scholar
  34. 34.
    Kwon, H.J.: Use of comsol simulation for undergraduate fluid dynamics course. In: 2012 ASEE Annual Conference & Exposition, San Antonio, Texas. (2012)
  35. 35.
    Lee, V., Law, M., Wee, S.: Theory to practice on finite element method and computational fluid dynamics tools. Aust. J. Eng. Educ. 22(2), 123–133 (2015)Google Scholar
  36. 36.
    Lolla, S.: Path Planning in Time Dependent Flows using Level Set Methods. PhD., University of Massachusetts Institute Of Technology (2012)Google Scholar
  37. 37.
    Louste, C., Liegeois, A.: Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J. Intell. Robot. Syst. 27(1), 99–112 (2000)CrossRefMATHGoogle Scholar
  38. 38.
    Nau, D., Kumar, V., Kanal, L.: General branch and bound, and its relation to A* and AO*. Artif. Intell. 23(1), 29–58 (1984)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Pepper, D., Wang, X.: Benchmarking COMSOL Multiphysics 3.5a CFD problems. In: Proceeding of the Cosmol Conference 2009, Boston. Comsol Inc. (2009)Google Scholar
  40. 40.
    Pimenta, L., Michael, N., Mesquita, R., Pereira, G., Kumar, V.: Control of swarms based on hydrodynamic models. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1948–1953 (2008)Google Scholar
  41. 41.
    Premakumar, P.: A* (A star) search for path planning tutorial. Matlab Central. (2010)
  42. 42.
    Ramos Del Olmo, A.: Introducción al análisis matemático del método de elementos finitos. Editorial Complutense, Madrid (2013). ISBN:978-8499381282Google Scholar
  43. 43.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  44. 44.
    Roussos, G., Dimarogonas, D.V., Kyriakopoulos, K.J.: 3d navigation and collision avoidance for nonholonomic aircraft-like vehicles. Int. J. Adapt. Control Signal Process. 24(10), 900–920 (2010). doi: 10.1002/acs.1199 MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Sun, X., Yeoh, W., Uras, T., Koenig, S.: Incremental ara*: an incremental anytime search algorithm for moving-target search. In: International Conference on Automated Planning and Scheduling (2012)Google Scholar
  46. 46.
    Suzuno, K., Ueyama, D., Branicki, M., Tth, R., Braun, A., Lagzi, I.: Maze solving using fatty acid chemistry. Langmuir 30(31), 9251–9255 (2014). doi: 10.1021/la5018467 CrossRefGoogle Scholar
  47. 47.
    Szab, C., Sobota, B.: Path-finding algorithm application for route-searching in different areas of computer graphics. In: Zhang, Y. (ed.) New Frontiers in Graph Theory. InTech (2012). ISBN:978-953-51-0115-4Google Scholar
  48. 48.
    Tabatabaian, M.: Comsol 5 for Engineers. Multiphysics Modeling Series. Mercury Learning & Information (2015).
  49. 49.
    Twizell, E., Bright, N.: Numerical modelling of fan performance. Appl. Math. Model. 5(4), 246–250 (1981). doi: 10.1016/S0307-904X(81)80074-1 CrossRefMATHGoogle Scholar
  50. 50.
    Villacorta-Atienza, J., Calvo, C., Makarov, V.: Prediction-for-compaction: navigation in social environments using generalized cognitive maps. Biol. Cybern. 109(3), 307–320 (2015). doi: 10.1007/s00422-015-0644-8 CrossRefMATHGoogle Scholar
  51. 51.
    Wang, J., Deng, W.: Optimizing capacity of signalized road network with reversible lanes. Transport (2015). doi: 10.3846/16484142.2014.994227
  52. 52.
    Wu, X., Zhang, S.: The study and application of artificial intelligence pathfinding algorithm in game domain. In: 2011 International Conference on Computer Science and Service System (CSSS), pp. 3772–3774. IEEE (2011). doi: 10.1109/CSSS.2011.5974547
  53. 53.
    Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for A*. Int. J. Geogr. Inf. Sci. 23(4), 531–543 (2009). doi: 10.1080/13658810801949850 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.MOMAT Research Group and Instituto de Matemática Interdisciplinar, Departamento de Matemática AplicadaUniversidad Complutense de MadridMadridSpain

Personalised recommendations