Skip to main content

Advertisement

Log in

Time Adaptive Numerical Solution of a Highly Degenerate Diffusion–Reaction Biofilm Model Based on Regularisation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a quasilinear degenerate diffusion–reaction system that describes biofilm formation. The model exhibits two non-linear effects: a power law degeneracy as one of the dependent variables vanishes and a super diffusion singularity as it approaches unity. Biologically relevant solutions are characterized by a moving interface and gradient blow-up there. Discretisation of the PDE in space by a standard finite volume scheme leads to a singular system of ordinary differential equations. We show that regularisation of this system allows the application of error controlled adaptive integration techniques to solve the underlying PDE. This overcomes the major limitation of existing methods for this type of problem which work with fixed time-steps. We apply the resulting numerical method to study the effect of signal diffusion in the aqueous phase on quorum sensing induction in a biofilm colony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dillon, R., Fauci, L., Fogelson, A., Gaver, D.: Modelling biofilm processes using the immersed boundary method. J. Comput. Phys. 129(1), 57–73 (1996)

    Article  MATH  Google Scholar 

  2. Hall-Stoodley, L., Costerton, J.W., Stoodley, P.: Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004)

    Article  Google Scholar 

  3. Imran, M., Smith, H.: A model of optimal dosing of antibiotic treatment in biofilm. Math. Biosci. Eng. 11(3), 547–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lear, G., Lewis, G.D.: Microbial Biofilms: Current Research and Applications. Caister Academic, Berlin (2012). ISBN 978-1-904455-96-7

    Google Scholar 

  5. Martins dos Santos, V.A.P., Yakimov, M.M., Timmis, K.N., Golyshin, P.N.: Genomic insights into oil biodegradation in marine systems. In: Diaz, E. (ed), Microbial Biodegradation: Genomics and Molecular Biology, p. 1971. Horizon Scientific Press. ISBN 978-1-904455-17-2 (2008)

  6. Watnick, P., Kolter, R.: Biofilm-city of microbes (minireview). J. Bacteriol. 182(10), 2675–2679 (2000)

    Article  Google Scholar 

  7. Stewart, P.S., Costerton, J.W.: Antibiotic resistance of bacteria in biofilms. Lancet 358(9276), 135–8 (2001)

    Article  Google Scholar 

  8. Anderl, J.N., Franklin, M.J., Stewart, P.S.: Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818–1824 (2000)

  9. Schwermer, C.U., Lavik, G., Abed, R.M., et al.: Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl. Environ. Microbiol. 74(9), 2841–51 (2008)

    Article  Google Scholar 

  10. Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)

    Article  Google Scholar 

  11. Andersen, P.C., Brodbeck, B.V., Oden, S., Shriner, A., Leite, B.: Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa. FEMS Microbiol. Lett. 274(2), 210–217 (2007)

  12. Wanner, O., Eberl, H.J., Van Loosdrecht, M.C.M., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E.: Mathematical Modelling of Biofilms. IWA Publishing, London (2006)

    Google Scholar 

  13. van Loosdrecht, M.C.M., Heijnen, J.J., Eberl, H., Kreft, J., Picioreanu, C.: Mathematical Modelling of Biofilm Structures. Antonie Van Leeuwenhoek 81(1), 245–256 (2002)

    Article  Google Scholar 

  14. Eberl, H.J., Parker, D.F., Van Loosdrecht, C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161–175 (2001)

    Article  MATH  Google Scholar 

  15. Klapper, I., Dockery, J.: Mathematical description of microbial biofilms. SIAM Rev. 52(2), 221–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Q., Zhang, T.: Review of mathematical models for biofilms. Solid State Commun. 150(21/22), 1009–1022 (2010)

    Article  Google Scholar 

  17. Eberl, H.J., Collinson, S.: A modelling and simulation study of siderophore mediated antagonsim in dual-species biofilms. Theor. Biol. Med. Mod. 6, 30 (2009)

    Article  Google Scholar 

  18. Eberl, H.J., Sudarsan, R.: Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J. Theor. Biol. 253(4), 788–807 (2008)

    Article  MathSciNet  Google Scholar 

  19. Emerenini, B., Hense, B.A., Kuttler, C., Eberl, H.J.: A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10(7), e0132385 (2015)

    Article  Google Scholar 

  20. Frederick, M., Kuttler, C., Hense, B.A., Müller, J., Eberl, H.J.: A mathematical model of quorum sensing in patchy biofilm communities with slow background flow. Can. Appl. Math. Quart. 18(3), 267–298 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Frederick, M.R., Kuttler, C., Hense, B.A., Eberl, H.J.: A mathematical model of quorum sensing regulated EPS production in biofilms. Theor. Biol. Med. Mod. 8, 8 (2011)

    Article  Google Scholar 

  22. Khassehkhan, H., Efendiev, M.A., Eberl, H.J.: A degenerate diffusion–reaction model of an amensalistic biofilm control system: existence and simulation of solution. Discrete Cont. Dy. Syst. B 12(2), 371–388 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Macias-Diaz, J.E.: A positive finite-difference model in the computational simulation of complex biological film models. J. Differ. Equ. Appl. 20(4), 548–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rahman, K.A., Sudarsan, R., Eberl, H.J.: A mixed culture biofilm model with cross-diffusion. Bull. Math. Biol. 77(11), 2086–2124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khassehkhan, H., Hillen, T., Eberl, H.J.: A non-linear master equation for a degenerate diffusion model of biofilm growth. LNCS 5544, 5–744 (2009)

    Google Scholar 

  26. Ngamsaad, W., Sunatai, S.: Mechanically-driven spreading of bacterial populations. Commun. Nonlinear Sci. Numer. Simul. 35, 88–96 (2016)

    Article  MathSciNet  Google Scholar 

  27. Efendiev, M.A., Zelik, S.V., Eberl, H.J.: Existence and longtime behaviour of a biofilm model. Commun. Pure Appl. Anal. 8(2), 509–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Duvnjak, A., Eberl, H.J.: Time-discretisation of a degenerate reaction–diffusion equation arising in biofilm modelling. El. Trans Num. Anal. 23, 15–38 (2006)

    MATH  Google Scholar 

  29. Khassehkhan, H., Eberl, H.J.: Interface tracking for a non-linear degenerated diffusion–reaction equation describing biofilm formation. Dyn. Cont. Disc. Imp. Sys. A 13SA, 131–144 (2006)

    Google Scholar 

  30. Khassehkhan, H., Eberl, H.J.: Modelling and simulation of a bacterial biofilm that is controlled by pH and protonated lactic acids. Comput. Math. Methods Med. 9(1), 47–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eberl, H.J., Demaret, L.: A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. El. J. Diff. Equs. CS 15, 77–95 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Sirca, S., Horvat, M.: Computational Methods for Physicists. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  33. Muhammad, N., Eberl, H.J.: OpenMP parallelization of a mickens time-integration scheme for a mixed-culture biofilm model and its performance on multi-core and multi-processor computers. LNCS 5976, 180–195 (2010)

    Google Scholar 

  34. Rahman, K.A., Eberl, H.J.: Numerical treatment of a cross-diffusion model of biofilm exposure to antimicrobials. LNCS 8384, 134–144 (2014)

    MathSciNet  Google Scholar 

  35. Morales-Hernandez, M.D., Medina-Ramirez, I.E., Avelar-Gonzalez, F.J., Macias-Dias, J.E.: An efficient recursive algorithm in the computational simulation of the bounded growth of biological films. Int. J. Comp. Meth. 9(4), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jalbert, E.M.: Comparison of a semi-implicit and a fully-implicit time integration method for a highly degenerate diffusion–reaction equation coupled with an ordinary differential equation. M.Sc. Thesis, University of Guelph (2016)

  37. Balsa-Canto, E., Lopez-Nunez, A., Vazquez, C.: Numerical methods for a nonlinear reaction–diffusion system modelling a batch culture of biofilm. Appl. Math. Model. 41, 164–179 (2017)

  38. Medina-Ramirez, I.E., Macias-Diaz, J.E.: On a fully discrete finite-difference approximation of a non-linear diffusionreaction model in microbial ecology. Int. J. Comput. Math. 90(9), 1915–1937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, G.F., Liu, G.R., Li, M.: An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates, Mathematical Problems in Engineering, p. 708497 (2015)

  40. Hense, B.A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., Kreft, J.: Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5, 230–239 (2007)

    Article  Google Scholar 

  41. Redfield, R.J.: Is quorum sensing a side effect of diffusion sensing? Trends Microbial. 10, 365–370 (2002)

    Article  Google Scholar 

  42. Trovato, A., Seno, F., Zanardo, M., Alberghini, S., Tondello, A., Squartini, A.: Quorum vs. diffusion sensing: a quantitative analysis of the relevance of absorbing or reflecting boundaries. FEMS Microbiol. Lett. 352(2), 198–203 (2014)

    Article  Google Scholar 

  43. Chopp, D.L., Kirisits, M.J., Moran, B., Parsek, M.R.: A mathematical model of quorum sensing in a growing bacterial biofilm. J. Ind. Microbiol. Biotech. 29, 339–346 (2002)

    Article  MATH  Google Scholar 

  44. Chopp, D.L., Kirisits, M.J., Moran, B., Parsek, M.R.: The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol. 65(6), 1053–1079 (2003)

    Article  MATH  Google Scholar 

  45. Vaughan, B.L., Smith, B.G., Chopp, D.L.: The influence of fluid flow on modelling quorum sensing in bacterial biofilms. Bull. Math. Biol. 72(5), 1143–1165 (2010)

    Article  MATH  Google Scholar 

  46. Walter, W.: Ordinary Differential Equations. Springer, Berlin (1997)

    Google Scholar 

  47. Hackbusch, W.: Theorie und Numerik Elliptischer Differentialgleichungen. Teubner, Stuttgart (1986)

    Book  MATH  Google Scholar 

  48. Rang, J.: Improved Traditional Rosenbrock–Wanner Methods for Stiff ODEs and DAEs. Institute of Scientific Computing, Heidelberg (2013)

    MATH  Google Scholar 

  49. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  50. Saad, Y.: SPARSKIT: a basic tool for sparse matrix computations (1994). http://www.users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html

  51. Polyanin, A.D., Zaitsev, V.F.: Handbook of Non-linear Partial Differential Equations, 2nd edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  52. Picioreanu, C., Van Loosdrecht, C.M., Heijnen, J.J.: Mathematical modelling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58(1), 101–116 (1998)

    Article  Google Scholar 

  53. Ward, J.P., King, J.R., Koerber, A.J., Williams, P., Croft, J.M., Sockett, R.E.: Mathematical modeling of quorum sensing bacteria. IMA J. Math. Appl. Med. Biol. 18, 263–292 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study has been financially supported by the Natural Science and Engineering Research Council of Canada (NSERC): MG holds a PGS-D graduate scholarship, HJE a Discovery Grant, the equipment was purchased with a Research Tools and Infrastructure Grant (HJE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Eberl, H.J. Time Adaptive Numerical Solution of a Highly Degenerate Diffusion–Reaction Biofilm Model Based on Regularisation. J Sci Comput 74, 1060–1090 (2018). https://doi.org/10.1007/s10915-017-0483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0483-y

Keywords

Mathematics Subject Classification

Navigation