Skip to main content
Log in

Uniform Convergence of V-cycle Multigrid Algorithms for Two-Dimensional Fractional Feynman–Kac Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

When solving large linear systems stemming from the approximation of elliptic partial differential equations (PDEs), it is known that the V-cycle multigrid method (MGM) can significantly lower the computational cost. Many convergence estimates already exist for the V-cycle MGM: for example, using the regularity or approximation assumptions of the elliptic PDEs, the results are obtained in Bank and Douglas (SIAM J Numer Anal 22:617–633, 1985), Bramble and Pasciak (Math Comp 49:311–329, 1987); in the case of multilevel matrix algebras (like circulant, tau, Hartely) (Aricò et al. in SIAM J Matrix Anal Appl 26:186–214, 2004; Aricò and Donatelli in Numer Math 105:511–547, 2007), special prolongation operators are provided and the related convergence results are rigorously developed, using a functional approach. In this paper we derive new uniform convergence estimates for the V-cycle MGM applied to symmetric positive definite Toeplitz block tridiagonal matrices, by also discussing few connections with previous results. More concretely, the contributions of this paper are as follows: (1) It tackles the Toeplitz systems directly for the elliptic PDEs. (2) Simple (traditional) restriction operator and prolongation operator are employed in order to handle general Toeplitz systems at each level of the recursion. Such a technique is then applied to systems of algebraic equations generated by the difference scheme of the two-dimensional fractional Feynman–Kac equation, which describes the joint probability density function of non-Brownian motion. In particular, we consider the two coarsening strategies, i.e., doubling the mesh size (geometric MGM) and Galerkin approach (algebraic MGM), which lead to the distinct coarsening stiffness matrices in the general case: however, several numerical experiments show that the two algorithms produce almost the same error behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aricò, A., Donatelli, M.: A V-cycle multigrid for multilevel matrix algebras: proof of optimality. Numer. Math. 105, 511–547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aricò, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26, 186–214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Haim, A., Klafter, J.: On mean residence and first passage times in finite one-dimensional systems. J. Chem. Phys. 109, 5187–5193 (1998)

    Article  Google Scholar 

  4. Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal. 22, 617–633 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolten, M., Donatelli, M., Huckle, T., Kravvaritis, C.: Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices. BIT Numer. Math. 55, 341–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.H.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57, 23–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theorey of Finite Element Methods. Springer, New York (2008)

    Book  Google Scholar 

  9. Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, R.H., Chang, Q.S., Sun, H.W.: Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19, 516–529 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  12. Chen, M.H., Wang, Y.T., Cheng, X., Deng, W.H.: Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation. BIT Numer. Math. 54, 623–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16, 516–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. ESAIM Math. Model. Numer. Anal. 49, 373–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)

    Article  MATH  Google Scholar 

  17. Chen, M.H., Deng, W.H.: Convergence proof for the multigird method of the nonlocal model. SIAM J. Matrix Anal. Appl. (minor revised), arXiv:1605.05481

  18. Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donatelli, M.: An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Fiorentino, G., Serra, S.: Multigrid methods for Toeplitz matrices. Calcolo 28, 283–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fiorentino, G., Serra, S.: Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17, 1068–1081 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  23. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. Chelsea, New York (1984)

    MATH  Google Scholar 

  24. Hackbusch, W.: Multigird Methods and Applications. Springer, Berlin (1985)

    Book  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  26. Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16, 848–864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ji, C.C., Sun, Z.Z.: A higher-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  29. Meurant, G.: A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J. Matrix Anal. Appl. 13, 707–728 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  32. Ruge, J.: Algebraic multigrid. In: McCormick, S. (ed.) Multigrid Methods, pp. 73–130. SIAM, Philadelphia (1987)

    Chapter  Google Scholar 

  33. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  34. Serra-Capizzano, S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences. Numer. Math. 92, 433–465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (2002)

    Book  MATH  Google Scholar 

  36. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigird. Academic Press, New York (2001)

    Google Scholar 

  37. Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)

    Article  MathSciNet  Google Scholar 

  38. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Qiang Du for his valuable comments while working in Columbia university. This work was supported by NSFC 11601206 and 11671182, the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2016-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Chen.

Appendix

Appendix

Proof of Lemma 2.3

Since \(A^{(k)}\) is the symmetric matrix, we denote \(A^{(k)}=\{a_{i,j}^{(k)}\}_{i,j=1}^{\infty }\) with \(a_{i,j}^{(k)}=a_{|i-j|}^{(k)}~~~~\forall k \ge 1.\) Using the relation \(A^{(k)}=L_h^{H}A^{(k-1)}L_{H}^{h}\), there exists

$$\begin{aligned} \{b_{j,l}^{(k)}\}_{j,l=1}^{\infty }=A^{(k-1)}L_{H}^{h}~~~~\mathrm{and}~~~~\{a_{i,l}^{(k)}\}_{i,l=1}^{\infty }=L_h^{H}A^{(k-1)}L_{H}^{h} \end{aligned}$$

with \(b_{j,l}^{(k)}=a_{2l-j-1}^{(k-1)}+2a_{2l-j}^{(k-1)}+a_{2l-j+1}^{(k-1)}\) and \(a_{i,l}^{(k)}=b_{2i-1,l}^{(k)}+2b_{2i,l}^{(k)}+b_{2i+1,l}^{(k)}\). Then for the Toeplitz matrix \(A^{(k)}\), it holds

$$\begin{aligned} a_0^{(k)}&=6a_0^{(k-1)}+8a_1^{(k-1)}+2a_2^{(k-1)} \quad \forall k \ge 2; \nonumber \\ a_j^{(k)}&=a_{2j-2}^{(k-1)} +4a_{2j-1}^{(k-1)}+6a_{2j}^{(k-1)}+4a_{2j+1}^{(k-1)}+a_{2j+2}^{(k-1)} \quad \forall j \ge 1. \end{aligned}$$
(A.1)

We prove (2.13) by mathematical induction. For \(k=2\), Eq. (2.13) holds obviously. Suppose (2.13) holds for \(k=2,3,\ldots s\). In particular, for \(k=s\), we have

$$\begin{aligned} a_0^{(s)} =&(4C_s+2^{s-1})a_0^{(1)}+\sum _{m=1}^{2\cdot 2^{s-1}-1}{_0}C_m^sa_m^{(1)};\nonumber \\ a_1^{(s)} =&C_sa_0^{(1)}+\sum _{m=1}^{3\cdot 2^{s-1}-1}{_1}C_m^s a_m^{(1)};\nonumber \\ a_j^{(s)} =&\sum _{m=(j-2)2^{s-1}}^{(j+2)2^{s-1}-1} {_j}C_m^s a_m^{(1)} \quad \forall j\ge 2. \end{aligned}$$
(A.2)

Next we need to prove that (2.13) holds for \(k=s+1\).

According to (A.1), (A.2) and the coefficients \({_j}C_m^s\), \(j\ge 0\) in (2.13), we can check that

$$\begin{aligned} a_0^{(s+1)}&=6a_0^{(s)}+8a_1^{(s)}+2a_2^{(s)}\\&=\left( 32c_s+6\cdot 2^{s-1}\right) a_0^{(1)}+\sum _{m=1}^{2^{s-1}-1}\left( 6\cdot {_0}C_m^{s} +8\cdot {_1}C_m^{s}+2\cdot {_2}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=2^{s-1}}^{2\cdot 2^{s-1}-1}\left( 6\cdot {_0}C_m^{s} +8\cdot {_1}C_m^{s}+2\cdot {_2}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=2\cdot 2^{s-1}}^{3\cdot 2^{s-1}-1}\left( 8\cdot {_1}C_m^{s}+2\cdot {_2}C_m^{s} \right) a_m^{(1)} +\sum _{m=3\cdot 2^{s-1}}^{4\cdot 2^{s-1}-1}2\cdot {_2}C_m^{s} a_m^{(1)}\\&=(4C_{s+1}+2^{s})a_0^{(1)}+\sum _{m=1}^{4\cdot 2^{s-1}-1}{_0}C_m^{s+1}a_m^{(1)};\\ a_1^{(s+1)}&=a_0^{(s)}+4a_1^{(s)}+6a_2^{(s)}+4a_3^{(s)}+a_4^{(s)}\\&=\left( 8c_s+ 2^{s-1}\right) a_0^{(1)}+\sum _{m=1}^{2^{s-1}-1}\left( {_0}C_m^{s} +4\cdot {_1}C_m^{s}+6\cdot {_2}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=2^{s-1}}^{2\cdot 2^{s-1}-1}\left( {_0}C_m^{s} +4\cdot {_1}C_m^{s}+6\cdot {_2}C_m^{s} +4\cdot {_3}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=2\cdot 2^{s-1}}^{3\cdot 2^{s-1}-1}\left( 4\cdot {_1}C_m^{s}+6\cdot {_2}C_m^{s} +4\cdot {_3}C_m^{s}+{_4}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=3\cdot 2^{s-1}}^{4\cdot 2^{s-1}-1}\left( 6\cdot {_2}C_m^{s} +4\cdot {_3}C_m^{s}+{_4}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=4\cdot 2^{s-1}}^{5\cdot 2^{s-1}-1}\left( 4\cdot {_3}C_m^{s}+{_4}C_m^{s} \right) a_m^{(1)} +\sum _{m=5\cdot 2^{s-1}}^{6\cdot 2^{s-1}-1}{_4}C_m^{s} a_m^{(1)}\\&=C_{s+1}a_0^{(1)}+\sum _{m=1}^{6\cdot 2^{s-1}-1}{_1}C_m^{s+1} a_m^{(1)};\\ \end{aligned}$$

and

$$\begin{aligned} a_j^{(s+1)}&=a_{2j-2}^{(s)} +4a_{2j-1}^{(s)}+6a_{2j}^{(s)}+4a_{2j+1}^{(s)}+a_{2j+2}^{(s)}\\&=\sum _{m=(2j-4)2^{s-1}}^{(2j-3)2^{s-1}-1} {_{2j-2}}C_m^{s} a_m^{(1)} +\sum _{m=(2j-3)2^{s-1}}^{(2j-2)2^{s-1}-1} \left( {_{2j-2}}C_m^{s} +4\cdot {_{2j-1}}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=(2j-2)2^{s-1}}^{(2j-1)2^{s-1}-1} \left( {_{2j-2}}C_m^{s} +4\cdot {_{2j-1}}C_m^{s}+6\cdot {_{2j}}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=(2j-1)2^{s-1}}^{2j\cdot 2^{s-1}-1} \left( {_{2j-2}}C_m^{s} +4\cdot {_{2j-1}}C_m^{s}+6\cdot {_{2j}}C_m^{s}+4\cdot {_{2j+1}}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=2j\cdot 2^{s-1}}^{(2j+1)\cdot 2^{s-1}-1} \left( 4\cdot {_{2j-1}}C_m^{s}+6\cdot {_{2j}}C_m^{s}+4\cdot {_{2j+1}}C_m^{s}+{_{2j+2}}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=(2j+1)\cdot 2^{s-1}}^{(2j+2)\cdot 2^{s-1}-1} \left( 6\cdot {_{2j}}C_m^{s}+4\cdot {_{2j+1}}C_m^{s}+{_{2j+2}}C_m^{s} \right) a_m^{(1)}\\&\quad +\sum _{m=(2j+2)\cdot 2^{s-1}}^{(2j+3)\cdot 2^{s-1}-1} \left( 4\cdot {_{2j+1}}C_m^{s}+{_{2j+2}}C_m^{s} \right) a_m^{(1)} +\sum _{m=(2j+3)\cdot 2^{s-1}}^{(2j+4)\cdot 2^{s-1}-1} {_{2j+2}}C_m^{s} a_m^{(1)}\\&=\sum _{m=(2j-4)2^{s-1}}^{(2j+4)2^{s-1}-1} {_j}C_m^{s+1} a_m^{(1)}. \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Deng, W. & Serra-Capizzano, S. Uniform Convergence of V-cycle Multigrid Algorithms for Two-Dimensional Fractional Feynman–Kac Equation. J Sci Comput 74, 1034–1059 (2018). https://doi.org/10.1007/s10915-017-0480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0480-1

Keywords

Navigation