Journal of Scientific Computing

, Volume 74, Issue 2, pp 1009–1033 | Cite as

A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations with Fractional Derivative Boundary Conditions

Article

Abstract

We develop a fast finite difference method for time-dependent variable-coefficient space-fractional diffusion equations with fractional derivative boundary-value conditions in three dimensional spaces. Fractional differential operators appear in both of the equation and the boundary conditions. Because of the nonlocal nature of the fractional Neumann boundary operator, the internal and boundary nodes are strongly coupled together in the coupled linear system. The stability and convergence of the finite difference method are discussed. For the implementation, the development of the fast method is based upon a careful analysis and delicate decomposition of the structure of the coefficient matrix. The fast method has approximately linear computational complexity per Krylov subspace iteration and an optimal-order memory requirement. Numerical results are presented to show the utility of the method.

Keywords

Anomalous diffusion Finite difference method Fractional derivative boundary condition Space-fractional diffusion equation Stability and convergence analysis Maximum-minimum principle Toeplitz matrix 

Notes

Acknowledgements

This work was supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Natural Science Foundation of China under Grants 11471194, 91630207 and 11571115, by the National Science Foundation under Grant DMS-1620194, by the National Science and technology major projects of China under Grants 2011ZX05052 and 2011ZX05011-004, by Natural Science Foundation of Shandong Province of China under Grant ZR2011AM015, by Taishan Scholars Program of Shandong Province of China, and by the China Scholarship Council (File No. 201606220127). The authors would like to express their sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

References

  1. 1.
    Baeumer, B., Kovcs, M., Meerschaert, M., Schilling, R., Straka, P.: Reflected spectrally negative stable processes and their governing equations. Trans. Am. Math. Soc. 368(1), 227–248 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000)CrossRefGoogle Scholar
  3. 3.
    Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen, S., Liu, F., Jiang, X., Turner, I., Anh, V.: A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients. Appl. Math. Comput. 257, 591–601 (2015)MathSciNetMATHGoogle Scholar
  5. 5.
    Chen, S., Jie, S., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231(6), 2621–2633 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in \(\mathbb{R}^2\). SIAM J. Sci. Comput. 37(3), A1614–A1635 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(R^d\). Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-Dimensional distributed-Order fractional diffusion equations. J. Sci. Comput. 66(3), 1–32 (2015)Google Scholar
  11. 11.
    Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lim, S.C., Teo, L.P.: Repulsive Casimir force from fractional Neumann boundary conditions. Phys. Lett. B 679(2), 130–137 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mao, Z.P., Jie, S.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATHGoogle Scholar
  24. 24.
    Sun, H.G., Chen, W., Chen, Y.Q.: Fractional differential models for anomalous diffusion. Phys. A 389, 2719–2724 (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zeng, F.H., Mao, Z.P., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360–A383 (2017)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zhang, X., Lv, M., Crawford, J.W., Young, I.M.: The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the caputo derivatives. Adv. Water Resour. 30, 1205–1217 (2007)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524–529 (2009)MathSciNetMATHGoogle Scholar
  33. 33.
    Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations