Journal of Scientific Computing

, Volume 74, Issue 2, pp 826–850 | Cite as

On the Optimal Linear Convergence Rate of a Generalized Proximal Point Algorithm

Article
  • 88 Downloads

Abstract

The proximal point algorithm (PPA) has been well studied in the literature. In particular, its linear convergence rate has been studied by Rockafellar in 1976 under certain condition. We consider a generalized PPA in the generic setting of finding a zero point of a maximal monotone operator, and show that the condition proposed by Rockafellar can also sufficiently ensure the linear convergence rate for this generalized PPA. Indeed we show that these linear convergence rates are optimal. Both the exact and inexact versions of this generalized PPA are discussed. The motivation of considering this generalized PPA is that it includes as special cases the relaxed versions of some splitting methods that are originated from PPA. Thus, linear convergence results of this generalized PPA can be used to better understand the convergence of some widely used algorithms in the literature. We focus on the particular convex minimization context and specify Rockafellar’s condition to see how to ensure the linear convergence rate for some efficient numerical schemes, including the classical augmented Lagrangian method proposed by Hensen and Powell in 1969 and its relaxed version, the original alternating direction method of multipliers (ADMM) by Glowinski and Marrocco in 1975 and its relaxed version (i.e., the generalized ADMM by Eckstein and Bertsekas in 1992). Some refined conditions weaker than existing ones are proposed in these particular contexts.

Keywords

Convex programming Proximal point algorithm Augmented Lagrangian method Alternating direction method of multipliers Linear convergence rate 

References

  1. 1.
    Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104, 39–68 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)MATHGoogle Scholar
  4. 4.
    Blum, E., Oettli, W.: Mathematische Optimierung Grundlagen und Verfahren. Ökonometrie und Unternehmensforschung. Springer, Berlin (1975)MATHGoogle Scholar
  5. 5.
    Boley, D.: Local linear convergence of ADMM on quadratic or linear programs. SIAM J. Optim. 23, 2183–2207 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Burke, J.V., Qian, M.J.: A variable metric proximal point algorithm for monotone operators. SIAM J. Cont. Optim. 37, 353–375 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cai, X.J., Gu, G., He, B.S., Yuan, X.M.: A relaxed customized proximal point algorithm for separable convex programming. Sci. China Math. 56, 2179–2186 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Corman, E., Yuan, X.M.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24, 1614–1638 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions, http://arxiv.org/pdf/1407.5210.pdf (2017)
  10. 10.
    Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66, 889–916 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal points algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fang, E.X., Liu, H., He, B.S., Yuan, X.M.: The generalized alternating direction method of multipliers: New theoretical insights and applications. Math. Program. Comput. 7(2), 149–187 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain nonconvex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, pp. 299–331. North Holland, Amsterdam (1983)CrossRefGoogle Scholar
  16. 16.
    Glowinski, R., Marrocco, A.: Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires, R.A.I.R.O., R2, 41–76 (1975)Google Scholar
  17. 17.
    Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrangian in convex programming and their generalizations. Math. Program. Study 10, 86–97 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Optim. 1, 403–419 (1991)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Han, D.R., Yuan, X.M.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51, 3446–3457 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematchskie Metody 12, 747–756 (1976)MathSciNetMATHGoogle Scholar
  23. 23.
    Liang, J.W., Fadili, J., Peyré, G.: Convergence rates with inexact nonexpansive operators. Math. Progam. 159, 403–434 (2016)CrossRefMATHGoogle Scholar
  24. 24.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Martinet, B.: Regularization d’inequations variationelles par approximations successives. Revue Francaise d’Informatique et de Recherche Opérationelle 4, 154–159 (1970)MATHGoogle Scholar
  26. 26.
    Martinet, B.: Determination approchdée d’un point fixe d’une application pseudo-contractante. C.R. Acad. Sci. Paris 274, 163–165 (1972)MathSciNetMATHGoogle Scholar
  27. 27.
    Moreau, J.J.: Proximité et dualit ’e dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Nemirovski, A.: Prox-method with rate of convergence \(O(1/t)\) for variational inequality with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2005)CrossRefMATHGoogle Scholar
  29. 29.
    Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/{k^2})\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)MathSciNetGoogle Scholar
  30. 30.
    Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic elliptic differential equations. J. Soc. Indust, Appl. Math. 3, 28–41 (1955)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Polyak, B.T.: Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software. Publications Division, New York (1987)Google Scholar
  32. 32.
    Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)Google Scholar
  33. 33.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, N.J. (1970)CrossRefMATHGoogle Scholar
  34. 34.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 97–116 (1976)MathSciNetMATHGoogle Scholar
  35. 35.
    Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 877–898 (1976)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Shefi, R., Teboulle, M.: Rate of convergence analysis of decmposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24, 269–297 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Shen, L., Pan, S.: Linear convergence of the generalized PPA and several splitting methods for the composite inclusion problem. manuscript, (2015)Google Scholar
  38. 38.
    Teboulle, M.: Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083 (1997)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Yao, Y.Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46–55 (2008)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Zakon, E.: Mathematical Analysis, vol. I. The Trillia Group, Indiana (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingChina
  2. 2.Department of MathematicsHong Kong Baptist UniversityHong KongChina

Personalised recommendations