Skip to main content
Log in

A High-Order Local Projection Stabilization Method for Natural Convection Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a local projection stabilization (LPS) finite element method applied to numerically solve natural convection problems. This method replaces the projection-stabilized structure of standard LPS methods by an interpolation-stabilized structure, which only acts on the high frequencies components of the flow. This approach gives rise to a method which may be cast in the variational multi-scale framework, and constitutes a low-cost, accurate solver (of optimal error order) for incompressible flows, despite being only weakly consistent. Numerical simulations and results for the buoyancy-driven airflow in a square cavity with differentially heated side walls at high Rayleigh numbers (up to \(Ra=10^7\)) are given and compared with benchmark solutions. Good accuracy is obtained with relatively coarse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: Analysis of a full space–time discretization of the Navier–Stokes equations by a local projection stabilization method. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drw048

  2. Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch. Comput. Methods Eng. 24, 115–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200(21–22), 1747–1756 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 31(4), 1224–1250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrenechea, G., Valentin, F.: Consistent local projection stabilized finite element methods. SIAM J. Numer. Anal. 48(5), 1801–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrenechea, G.R., John, V., Knobloch, P.: A local projection stabilization finite element method with nonlinear crosswind diffusion for convection–diffusion–reaction equations. ESAIM Math. Model. Numer. Anal. 47(5), 1335–1366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Numerical Mathematics and Advanced Applications, pp. 123–130. Springer (2004)

  10. Benítez, M., Bermúdez, A.: A second order characteristics finite element scheme for natural convection problems. J. Comput. Appl. Math. 235(11), 3270–3284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernard, J.M.: Density results in sobolev spaces whose elements vanish on a part of the boundary. Chin. Ann. Math. B 32, 823–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques. Springer, Berlin (2004)

    MATH  Google Scholar 

  13. Boland, J., Layton, W.: An analysis of the finite element method for natural convection problems. Numer. Methods Partial Differ. Equ. 6(2), 115–126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11(5–6), 449–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544–2566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196(4–6), 853–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chacón Rebollo, T.: A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numer. Math. 79(2), 283–319 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chacón Rebollo, T., Gómez Mármol, M., Girault, V., Sánchez Muñoz, I.: A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. 33(3), 974–1007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chacón Rebollo, T., Gómez Mármol, M., Girault, V., Sánchez Muñoz, I.: A reduced discrete inf–sup condition in \({L}^p\) for incompressible flows and application. M2AN 49(4), 1219–1238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chacón Rebollo, T., Gómez Mármol, M., Restelli, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equation. J. Sci. Comput. 61(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chacón Rebollo, T., Gómez Mármol, M., Rubino, S.: Finite element approximation of an unsteady projection-based VMS turbulence model with wall laws. In: Knobloch, P. (ed.) Boundary and Interior Layers, Computational and Asymptotic Methods—BAIL 2014, volume 108 of Lecture Notes in Computational Science and Engineering, pp. 47–73. Springer, Berlin (2015)

    Google Scholar 

  23. Chacón Rebollo, T., Gómez Mármol, M., Rubino, S.: Numerical analysis of a finite element projection-based VMS turbulence model with wall laws. Comput. Methods Appl. Mech. Eng. 285, 379–405 (2015)

    Article  MathSciNet  Google Scholar 

  24. Chacón Rebollo, T., Hecht, F., Gómez Mármol, M., Orzetti, G., Rubino, S.: Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean. Math. Comput. Simul. 99, 54–70 (2014)

    Article  MathSciNet  Google Scholar 

  25. Chacón Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Birkhäuser, Basel (2014)

    Book  MATH  Google Scholar 

  26. Çıbık, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381(2), 469–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Codina, R., Principe, J.: Dynamic subscales in the finite element approximation of thermally coupled incompressible flows. Int. J. Numer. Methods Fluids 54(6–8), 707–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Codina, R., Principe, J., Avila, M.: Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int. J. Numer. Methods Heat Fluid Flow 20(5), 492–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Codina, R., Principe, J., Guasch, O., Badia, S.: Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196(21–24), 2413–2430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36(2), 796–823 (2016)

    Article  MathSciNet  Google Scholar 

  31. de Vahl Davis, G.: Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  32. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problems. In: Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 1–70. Birkhäuser, Basel (2000)

  33. Gresho, P.M., Lee, R.L., Chan, S.T., Sani, R.L.: Solution of the time-dependent incompressible Navier–Stokes and Boussinesq equations using the Galerkin finite element method. In: Approximation Methods for Navier–Stokes problems (Proceedings of Symposium, University of Paderborn, Paderborn, 1979), volume 771 of Lecture Notes in Mathematics, pp. 203–222. Springer, Berlin (1980)

  34. He, L., Tobiska, L.: The two-level local projection type stabilization as an enriched one-level approach. Adv. Comput. Math. 36(4), 503–523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hecht, F.: New development in FreeFem++ (www.freefem.org). J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Knobloch, P., Lube, G.: Local projection stabilization for advection–diffusion–reaction problems: one-level vs. two-level approach. Appl. Numer. Math. 59(12), 2891–2907 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Landau, L., Lifshitz, E.: Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon, Oxford (1982)

    Google Scholar 

  41. Löwe, J., Lube, G.: A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free convection problems. Math. Models Methods Appl. Sci. 22(2), 1150011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Manzari, M.: An explicit finite element algorithm for convective heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 9, 860–877 (1999)

    Article  MATH  Google Scholar 

  43. Massarotti, N., Nithiarasu, P., Zienkiewich, O.: Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer. Int. J. Numer. Methods Heat Fluid Flow 8, 969–990 (1998)

    Article  MATH  Google Scholar 

  44. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35(1), 239–269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rabinowitz, P.H.: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Ration. Mech. Anal. 29, 32–57 (1968)

    Article  MATH  Google Scholar 

  48. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion–Reaction and Flow Problems, volume 24 of Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2008)

  49. Rubino, S.: Numerical Modeling of Turbulence by Richardson Number-Based and VMS Models. Ph.D. thesis, Univeristy of Seville (2014)

  50. Schlichting, H., Gertesten, K.: Boundary Layer Theory. Springer, Berlin (2004)

    Google Scholar 

  51. Simon, J.: Compact sets in \( {L}^p(0, {T}; {B})\). Annali Mat. Pura Applicata (IV) 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  52. Tobiska, L., Winkel, C.: The two-level local projection type stabilization as an enriched one-level approach. A one-dimensional study. Int. J. Numer. Anal. Model. 7(3), 520–534 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Wan, D., Patnaik, B., Wei, G.: A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer. Heat Transf. 40, 199–228 (2001)

    Article  Google Scholar 

  54. Zhang, Y., Hou, Y., Zhao, J.: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Comput. Math. Appl. 68(4), 543–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research partially supported by Junta de Andalucía Excellence Project P12-FQM-454. Samuele Rubino would also gratefully acknowledge the financial support received from ERC Project H2020-EU.1.1.-639227, IdEx Bordeaux (Excellence Initiative of Université de Bordeaux) and FSMP (Fondation Sciences Mathématiques de Paris) during his postdoctoral research involved in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Sánchez Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacón Rebollo, T., Gómez Mármol, M., Hecht, F. et al. A High-Order Local Projection Stabilization Method for Natural Convection Problems. J Sci Comput 74, 667–692 (2018). https://doi.org/10.1007/s10915-017-0469-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0469-9

Keywords

Navigation