Skip to main content
Log in

Fast L1–L2 Minimization via a Proximal Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as \(L_1\) minimization do not work well. Recently, the difference of the \(L_1\) and \(L_2\) norms, denoted as \(L_1\)\(L_2\), is shown to have superior performance over the classic \(L_1\) method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the \(L_1\)\(L_2\) metric, and it makes some fast \(L_1\) solvers such as forward–backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for \(L_1\)\(L_2\). We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of \(L_1\)\(L_2\) based on a difference-of-convex approach in the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If POCS does not converge, we discard this trial in the analysis.

  2. We use the author’s Matlab implementation with default parameter settings and the same stopping condition adopted as \(L_1\)\(L_2\) in the comparsion.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bredies, K., Lorenz, D.A., Reiterer, S.: Minimization of non-smooth, non-convex functionals by iterative thresholding. J. Optim. Theory Appl. 165(1), 78–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 10(14), 707–710 (2007)

    Article  Google Scholar 

  5. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3869–3872 (2008)

  6. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. U.S.A. 100, 2197–2202 (2003)

    Article  MATH  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to non-negative least squares problems with applications. SIAM J. Imaging Sci. 6(4), 2010–2046 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fannjiang, A., Liao, W.: Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5(1), 179–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, X., Shi, L., Yan, M.: Nonconvex sorted l1 minimization for sparse approximation. J. Oper. Res. Soc. China 3, 207–229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (NIPS), pp. 1033–1041 (2009)

  14. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed lq minimization. SIAM J. Numer. Anal. 5(2), 927–957 (2013)

    Article  MATH  Google Scholar 

  15. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25, 2434–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In: Advances in Neural Information Processing Systems, pp. 379–387 (2015)

  17. Liu, T., Pong, T.K.: Further properties of the forward-backward envelope with applications to difference-of-convex programming. Comput. Optim. Appl. 67(3), 489–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenz, D.A.: Constructing test instances for basis pursuit denoising. Trans. Signal Process. 61(5), 1210–1214 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lou, Y., Osher, S., Xin, J.: Computational aspects of l1-l2 minimization for compressive sensing. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol. 359, pp. 169–180. Springer, Cham (2015)

  20. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dictionary based on difference of l1 and l2. J. Sci. Comput. 64(1), 178–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex l1 based methods. J. Sci. Comput. 68(3), 1082–1100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mammone, R.J.: Spectral extrapolation of constrained signals. J. Opt. Soc. Am. 73(11), 1476–1480 (1983)

    Article  Google Scholar 

  23. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papoulis, A., Chamzas, C.: Improvement of range resolution by spectral extrapolation. Ultrason. Imaging 1(2), 121–135 (1979)

    Article  Google Scholar 

  25. Pham-Dinh, T., Le-Thi, H.A.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.C.: Euclid in a taxicab: sparse blind deconvolution with smoothed regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015)

    Article  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  28. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  29. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 7(4), 1307–1330 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv:1511.06324 [cs, math] (2015)

  31. Woodworth, J., Chartrand, R.: Compressed sensing recovery via nonconvex shrinkage penalties. Inverse Probl. 32(7), 075,004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, L., Sun, Z., Li, D.H.: A Barzilai–Borwein-like iterative half thresholding algorithm for the \(l_{1/2}\) regularized problem. J. Sci. Comput. 67, 581–601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Z., Chang, X., Xu, F., Zhang, H.: \(l_{1/2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23, 1013–1027 (2012)

    Article  Google Scholar 

  34. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(l_1\)\(l_2\) for compressed sensing. SIAM J. Sci. Comput. 37, A536–A563 (2015)

    Article  MATH  Google Scholar 

  35. Zhang, S., Xin, J.: Minimization of transformed \(l_1\) penalty: Theory, difference of convex function algorithm, and robust application in compressed sensing. arXiv preprint arXiv:1411.5735 (2014)

Download references

Acknowledgements

The authors would like to thank Zhi Li and the anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yan.

Additional information

This work was partially supported by the NSF grants DMS-1522786 and DMS-1621798.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Yan, M. Fast L1–L2 Minimization via a Proximal Operator. J Sci Comput 74, 767–785 (2018). https://doi.org/10.1007/s10915-017-0463-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0463-2

Keywords

Mathematics Subject Classification

Navigation