Journal of Scientific Computing

, Volume 74, Issue 2, pp 631–639 | Cite as

Convergence Analysis in the Maximum Norm of the Numerical Gradient of the Shortley–Weller Method

  • Jiwon Seo
  • Seung-yeal Ha
  • Chohong Min


The Shortley–Weller method is a standard central finite-difference-method for solving the Poisson equation in irregular domains with Dirichlet boundary conditions. It is well known that the Shortley–Weller method produces second-order accurate solutions and it has been numerically observed that the solution gradients are also second-order accurate; a property known as super-convergence. The super-convergence was proved in the \(L^{2}\) norm in Yoon and Min (J Sci Comput 67(2):602–617, 2016). In this article, we present a proof for the super-convergence in the \(L^{\infty }\) norm.


Shortley–Weller Finite difference method Super-convergence Convergence analysis 


  1. 1.
    Caffarelli, L.A., Gilardi, G.: Monotonicity of the free boundary in the two-dimensional dam problem. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 7(3), 523–537 (1980)MathSciNetMATHGoogle Scholar
  2. 2.
    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 135(2), 118–125 (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Ciarlet, P.G., Miara, B., Thomas, J.M.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1989)Google Scholar
  4. 4.
    Friedman, A.: Variational principles and free-boundary problems. Courier Corporation, North Chelmsford (2010)Google Scholar
  5. 5.
    Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 3245–3263 (2012)MathSciNetMATHGoogle Scholar
  6. 6.
    Gustafsson, I.: A class of first order factorization methods. BIT 18, 142–156 (1978)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8(3), 2182–2189 (1965)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1996)Google Scholar
  9. 9.
    Li, Z.-C., Hu, H.-Y., Wang, S., Fang, Q.: Superconvergence of solution derivatives of the shortley-weller difference approximation to poisson’s equation with singularities on polygonal domains. Appl. Numer. Math. 58(5), 689–704 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ng, Y.T., Chen, H., Min, C., Gibou, F.: Guidelines for poisson solvers on irregular domains with dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. 41(2), 300–320 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Peskin, C.S.: Flow patterns around heart valves. In: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, pp. 214–221. Springer (1973)Google Scholar
  12. 12.
    Shortley, G.H., Weller, R.: The numerical solution of Laplace’s equation. J. Appl. Phys. 9(5), 334–348 (1938)CrossRefMATHGoogle Scholar
  13. 13.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, New Delhi (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Weynans, L.: A proof in the finite-difference spirit of the superconvergence of the gradient for the Shortley–Weller method. Ph.D. thesis, INRIA Bordeaux (2015)Google Scholar
  15. 15.
    Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yoon, G., Min, C.: Analyses on the finite difference method by Gibou, et al. for poisson equation. J. Comput. Phys. 280, 184–194 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yoon, G., Min, C.: Convergence analysis of the standard central finite difference method for Poisson equation. J. Sci. Comput. 67(2), 602–617 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yoon, G., Min, C., Kim, S.: A stable and convergent method for hodge decomposition of fluid-solid interaction. (2016). arXiv:1610.03195

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ewha Womans UniversitySeoulRepublic of Korea
  2. 2.Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations