Skip to main content
Log in

An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Extrapolation cascadic multigrid (EXCMG) method is an efficient multigrid method which has mainly been used for solving the two-dimensional elliptic boundary value problems with linear finite element discretization in the existing literature. In this paper, we develop an EXCMG method to solve the three-dimensional Poisson equation on rectangular domains by using the compact finite difference (FD) method with unequal meshsizes in different coordinate directions. The resulting linear system from compact FD discretization is solved by the conjugate gradient (CG) method with a relative residual stopping criterion. By combining the Richardson extrapolation and tri-quartic Lagrange interpolation for the numerical solutions from two-level of grids (current and previous grids), we are able to produce an extremely accurate approximation of the actual numerical solution on the next finer grid, which can greatly reduce the number of relaxation sweeps needed. Additionally, a simple method based on the midpoint extrapolation formula is used for the fourth-order FD solutions on two-level of grids to achieve sixth-order accuracy on the entire fine grid cheaply and directly. The gradient of the numerical solution can also be easily obtained through solving a series of tridiagonal linear systems resulting from the fourth-order compact FD discretizations. Numerical results show that our EXCMG method is much more efficient than the classical V-cycle and W-cycle multigrid methods. Moreover, only few CG iterations are required on the finest grid to achieve full fourth-order accuracy in both the \(L^2\)-norm and \(L^{\infty }\)-norm for the solution and its gradient when the exact solution belongs to \(C^6\). Finally, numerical result shows that our EXCMG method is still effective when the exact solution has a lower regularity, which widens the scope of applicability of our EXCMG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, London (1989)

    MATH  Google Scholar 

  2. Gupta, M.M.: A fourth-order Poisson solver. J. Comput. Phys. 55, 166–172 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gupta, M.M., Kouatchou, J.: Symbolic derivation of finite difference approximations for the three-dimensional Poisson equation. Numer. Methods Part. Differ. Equ. 14, 593–606 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Spotz, W.F., Carey, G.F.: A high-order compact formulation for the 3D poisson equation. Numer. Methods Part. Differ. Equ. 12, 235–243 (1996)

    Article  MATH  Google Scholar 

  5. Sutmann, G., Steffen, B.: High-order compact solvers for the three-dimensional Poisson equation. J. Comput. Appl. Math. 187, 142–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, J., Zhong, W., Zhang, J.: A general meshsize fourth-order compact difference discretization scheme for 3D Poisson equation. Appl. Math. Comput. 183, 804–812 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second-order and fourth-order discretization for multigrid Poisson solvers. J. Comput. Phys. 132, 226–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Othman, M., Abdullah, A.R.: An efficient multigrid Poisson solver. Int. J. Comput. Math. 71, 541–553 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schaffer, S.: High order multi-grid methods. Math. Comput. 43, 89–115 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, J.: Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization. J. Comput. Phys. 179, 170–179 (2002)

    Article  MATH  Google Scholar 

  11. Wang, Y., Zhang, J.: Sixth-order compact scheme combined with multigrid method and extrapolation technique for 2D poisson equation. J. Comput. Phys. 228, 137–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, J.: Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J. Comput. Phys. 143, 449–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, Y.B.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poisson equation. J. Comput. Phys. 229, 6381–6391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. McCormick, S.F. (ed.): Multigrid Methods. Frontiers in Applied Mathematics. SIAM, Philadelphia (1987)

    Google Scholar 

  15. Briggs, W.L., McCormick, S.F., Henson, V.E.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  16. Trottenberg, U., Oosterlee, C.W., Schller, A.: Multigrid. Academic Press, London (2001)

    Google Scholar 

  17. Moghaderi, H., Dehghan, M., Hajarian, M.: A fast and efficient two-grid method for solving d-dimensional Poisson equations. Numer. Algorithms 72, 483–537 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Altas, I., Dym, J., Gupta, M.M., Manohar, R.P.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, J., Sun, H., Zhao, J.J.: High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems. Comput. Methods Appl. Mech. Comput. 191, 4661–4674 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ge, Y.B., Cao, F.J.: Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems. J. Comput. Phys. 230, 4051–4070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Zhang, J.: Fast and robust sixth-order multigrid computation for the three-dimensional convection–diffusion equation. J. Comput. Appl. Math. 234, 3496–3506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bornemann, F.A., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaidurov, V.: Some estimates of the rate of convergence for the cascadic conjugate-gradient method. Comput. Math. Appl. 31, 161–171 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Braess, D., Dahmen, W.: A cascadic multigrid algorithm for the Stokes equations. Numer. Math. 82, 179–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Timmermann, G.: A cascadic multigrid algorithm for semilinear elliptic problems. Numer. Math. 86, 717–731 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaidurov, V., Tobiska, L.: The convergence of the cascadic conjugate- gradient method applied to elliptic problems in domains with re-entrant cor- ners. Math. Comput. 69, 501–520 (2000)

    Article  MATH  Google Scholar 

  27. Shaidurov, V., Timmermann, G.: A cascadic multigrid algorithm for semi-linear indefinite elliptic problems. Computing 64, 349–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, Z.C., Xu, X.J.: Cascadic multigrid for parabolic problems. J. Comput. Math. 18, 551–560 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Braess, D., Deuflhard, P., Lipnikov, K.: A subspace cascadic multigrid method for mortar elements. Computing 69, 205–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stevenson, R.: Nonconforming finite elements and the cascadic multi-grid method. Numer. Math. 91, 351–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, S.Z., Hu, H.X.: On the convergence of a cascadic multigrid method for semilinear elliptic problem. Appl. Math. Comput. 159, 407417 (2004)

    MathSciNet  Google Scholar 

  32. Du, Q., Ming, P.B.: Cascadic multigrid methods for parabolic problems. Sci. China Ser. A Math. 51, 1415–1439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, X.J., Chen, W.B.: Standard and economical cascadic multigrid methods for the mortar finite element methods. Numer. Math. Theory Methods Appl. 2, 180–201 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Yu, H.X., Zeng, J.P.: A cascadic multigrid method for a kind of semilinear elliptic problem. Numer. Algorithms 58, 143–162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, Z.C., Xu, X.J., Huang, Y.Q.: Economical cascadic multigrid method (ECMG). Sci. China Ser. A Math. 50(12), 1765–1780 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, C.M., Hu, H.L., Xie, Z.Q., et al.: Analysis of extrapolation cascadic multigrid method (EXCMG). Sci. China Ser. A-Math. 51, 1349–1360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, C.M., Shi, Z.C., Hu, H.L.: On extrapolation cascadic multigrid method. J. Comput. Math. 29, 684–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, H.L., Chen, C.M., Pan, K.J.: Asymptotic expansions of finite element solutions to Robin problems in \(H^3\) and their application in extrapolation cascadic multigrid method. Sci. China Math. 57, 687–698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu, H.L., Chen, C.M., Pan, K.J.: Time-extrapolation algorithm (TEA) for linear parabolic problems. J. Comput. Math. 32, 183–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pan, K.J., Tang, J.T., Hu, H.L., et al.: Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling (in Chinese), Chinese. J. Geophys. 55, 2769–2778 (2012)

    Google Scholar 

  41. Pan, K.J., Tang, J.T.: 2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method. Geophys. J. Int. 197, 1459–1470 (2014)

    Article  Google Scholar 

  42. Newman, G.A.: A Review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surv. Geophys. 35, 85–100 (2014)

    Article  Google Scholar 

  43. Berikelashuili, G., Gupta, M.M., Mirianashvili, M.: Convergence of fourth-order compact difference schemes for three-dimensional convection-diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pan, K.J., He, D.D., Hu, H.L.: A new extrapolation cascadic multigrid method for 3D elliptic boundary value problems on rectangular domains. arXiv preprint arXiv:1506.02983 (2015)

  45. Marchuk, G.I., Shaidurov, V.V.: Difference Methods and Their Extrapolations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  46. Neittaanmaki, P., Lin, Q.: Acceleration of the convergence in finite-difference method by predictor corrector and splitting extrapolation methods. J. Comput. Math. 5, 181–190 (1987)

    MathSciNet  MATH  Google Scholar 

  47. Fößmeier, R.: On Richardson extrapolation for finite difference methods on regular grids. Numer. Math. 55, 451–462 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Han, G.Q.: Spline finite difference methods and their extrapolation for singular two-point boundary value problems. J. Comput. Math. 11, 289–296 (1993)

    MathSciNet  MATH  Google Scholar 

  49. Sun, H., Zhang, J.: A high order finite difference discretization strategy based on extrapolation for convection diffusion equations. Numer. Methods Part. Differ. Equ. 20, 18–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rahul, K., Bhattacharyya, S.N.: One-sided finite-difference approximations suitable for use with Richardson extrapolation. J. Comput. Phys. 219, 13–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Munyakazi, J.B., Patidar, K.C.: On Richardson extrapolation for fitted operator finite difference methods. Appl. Math. Comput. 201, 465–480 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Tam, C.K.W., Kurbatskii, K.A.: A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes. J. Comput. Phys. 157, 588–617 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ma, Y., Ge, Y.: A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl. Math. Comput. 215, 3408–3417 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Marchi, C.H., Novak, L.A., Santiago, C.D., et al.: Highly accurate numerical solutions with repeated Richardson extrapolation for 2D Laplace equation. Appl. Math. Model. 37, 7386–7397 (2013)

    Article  MathSciNet  Google Scholar 

  55. Collatz, L.: The Numerical Treatment of Differential Equations. Springer, New York (1966)

    Google Scholar 

Download references

Acknowledgments

Kejia Pan was supported by the National Natural Science Foundation of China (Nos. 41474103 and 41204082), the National High Technology Research and Development Program of China (No. 2014AA06A602), the Natural Science Foundation of Hunan Province of China (No. 2015JJ3148). Dongdong He was supported by the Natural Science Foundation of China (No. 11402174), the Fundamental Research Funds for the Central Universities, the Program for Young Excellent Talents at Tongji University (No. 2013KJ012) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. Hongling Hu was supported by the National Natural Science Foundation of China (No. 11301176). The authors would like to thank the two anonymous reviewers for their helpful comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, K., He, D. & Hu, H. An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation. J Sci Comput 70, 1180–1203 (2017). https://doi.org/10.1007/s10915-016-0275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0275-9

Keywords

Mathematics Subject Classification

Navigation