Journal of Scientific Computing

, Volume 69, Issue 3, pp 1316–1345 | Cite as

A High-Order Level-Set Method with Enhanced Stability for Curvature Driven Flows and Surface Diffusion Motion

  • Yujie Zhang
  • Wenjing Ye


A high-order explicit level-set method based on the total variation diminishing Runge–Kutta method, a high-order scheme for distance computation and a smoothing scheme has been developed for simulating curvature driven flows and surface diffusion motion. This method overcomes the high-order CFL time restriction. The enhanced stability is achieved by utilizing several techniques, resulting in an accurate and smooth velocity field. In particular, the scheme for distance computation is used to reinitialize the level-set function and to extend the velocity from the zero level-set to the rest of the domain. As such, it greatly reduces the accumulated errors typically observed in the traditional PDE-based methods. The smoothing technique is used to remove the high-frequency oscillations produced by the high-order derivatives of the level-set function and is the key to the stability enhancement. A local treatment scheme was also developed which is crucial in the simulation of merging events. Results on several benchmark problems have demonstrated. Compared with some semi-implicit methods, the developed method is more accurate and has the same, if not better, stability.


Level set method Curvature flow Surface diffusion Closest point calculation CFL restriction 


  1. 1.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100(2), 209–228 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    English, R.E., Qiu, L., Yu, Y., Fedkiw, R.: Chimera grids for water simulation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2013, pp. 85–94. ACM (2013)Google Scholar
  5. 5.
    Caselles, V., Morel, J.-M., Sapiro, G., Tannenbaum, A.R.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7(3), 269–274 (1998)CrossRefGoogle Scholar
  6. 6.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Xie, X., Wang, C., Zhang, A., Meng, X.: Active contours model exploiting hybrid image information: an improved formulation and level set method. J. Comput. Inf. Syst. 9(20), 8371–8379 (2013)Google Scholar
  8. 8.
    Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152(1), 281–304 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Chopp, D.L., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1(1), 107–123 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1), 439–456 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kolahdouz, E.M., Salac, D.: A semi-implicit gradient augmented level set method. SIAM J. Sci. Comput. 35(1), A231–A254 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bruchon, J., Drapier, S., Valdivieso, F.: 3D finite element simulation of the matter flow by surface diffusion using a level set method. Int. J. Numer. Methods Eng. 86(7), 845–861 (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. preprint (2014)Google Scholar
  15. 15.
    Chopp, D.L.: Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106(1), 77–91 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Salac, D.: The augmented fast marching method for level set reinitialization. Bull. Am. Phys. Soc. 56 (2011)Google Scholar
  19. 19.
    Anumolu, L., Trujillo, M.F.: Gradient augmented reinitialization scheme for the level set method. Int. J. Numer. Methods Fluids 73(12), 1011–1041 (2013)MathSciNetGoogle Scholar
  20. 20.
    Sethian, J.A.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Osher, S., Ronald, F.: Level Set Methods and Dynamic Implicit Surfaces, 2003 edition. Applied Mathematical Sciences, vol. 153. Springer, New York, 31 Oct (2002)Google Scholar
  22. 22.
    Elsey, M., Esedoglu, S.: Fast and accurate redistancing by directional optimization. SIAM J. Sci. Comput. 36(1), A219–A231 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Saye, R.: High-order methods for computing distances to implicitly defined surfaces. Commun. Appl. Math. Comput. Sci. 9(1), 107–141 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Macklin, P., Lowengrub, J.: Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191–220 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ruuth, S.J.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144(2), 603–625 (1998). doi: 10.1006/jcph.1998.6025 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ruuth, S.J.: A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145(1), 166–192 (1998). doi: 10.1006/jcph.1998.6028 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zhang, K.H., Zhang, L., Song, H.H., Zhang, D.: Reinitialization-free level set evolution via reaction diffusion. IEEE Trans. Image Process. 22(1), 258–271 (2013). doi: 10.1109/tip.2012.2214046 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Weinert, H.L.: Efficient computation for Whittaker–Henderson smoothing. Comput. Stat. Data Anal. 52(2), 959–974 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010). doi: 10.1016/j.csda.2009.09.020 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Pan, J., Cocks, A., Kucherenko, S.: Finite element formulation of coupled grain-boundary and surface diffusion with grain-boundary migration. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1965), 2161–2184 (1997)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–467 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Chopp, D.L.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1), 230–244 (2001)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Buckley, M.J.: Fast computation of a discretized thin-plate smoothing spline for image data. Biometrika 81(2), 247–258 (1994). doi: 10.1093/biomet/81.2.247 MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Salac, D., Lu, W.: A local semi-implicit level-set method for interface motion. J. Sci. Comput. 35(2–3), 330–349 (2008). doi: 10.1007/s10915-008-9188-6 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Lervåg, K.Y.: Calculation of interface curvature with the level-set method. In: Sixth National Conference on Computational Mechanics MekIT’ 11, Trondherim (2011)Google Scholar
  38. 38.
    Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006). doi: 10.1016/ MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Ervik, Å., Lervåg, K.Y., Munkejord, S.T.: A robust method for calculating interface curvature and normal vectors using an extracted local level set. J. Comput. Phys. 257, 259–277 (2014). doi: 10.1016/ MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringHong Kong University of Science and TechnologyClear Water BayHong Kong

Personalised recommendations