Journal of Scientific Computing

, Volume 69, Issue 2, pp 610–632 | Cite as

Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model

  • Jeonghun J. Lee


We study the a priori error analysis of finite element methods for Biot’s consolidation model. We consider a formulation which has the stress tensor, the fluid flux, the solid displacement, and the pore pressure as unknowns. Two mixed finite elements, one for linear elasticity and the other for mixed Poisson problems are coupled for spatial discretization, and we show that any pair of stable mixed finite elements is available. The novelty of our analysis is that the error estimates of all the unknowns are robust for material parameters. Specifically, the analysis does not need a uniformly positive storage coefficient, and the error estimates are robust for nearly incompressible materials. Numerical experiments illustrating our theoretical analysis are included.


Poroelasticity Error analysis Mixed finite elements 

Mathematics Subject Classification

65N30 65N12 


  1. 1.
    Anandarajah, A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. SpringerLink: Bücher, Springer, New York (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér 19(1), 7–32 (1985)MathSciNetMATHGoogle Scholar
  3. 3.
    Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (electronic) (2007)Google Scholar
  6. 6.
    Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 2743–2769 (2014)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1992)Google Scholar
  11. 11.
    Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715–730 (electronic) (2003)Google Scholar
  13. 13.
    Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)MathSciNetMATHGoogle Scholar
  14. 14.
    Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331–1349 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    de Boer, R.: Trends in Continuum Mechanics of Porous Media, Theory and Applications of Transport in Porous Media, vol. 18. Springer, Dordrecht (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Fraejis de Veubeke, B.M.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, vol. 5, pp. J.1 – J.51 (1975)Google Scholar
  17. 17.
    Lawrence, C.: Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  18. 18.
    Falk, R.S.: Finite elements for linear elasticity. In: Boffi, D., Gastaldi, L. (eds.) Mixed Finite Elements: Compatibility Conditions, vol. 1939. Springer, New York (2008)Google Scholar
  19. 19.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer, Berlin, Theory and algorithms (1986)Google Scholar
  20. 20.
    Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352–372 (2012)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Gurtin, M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press Inc., New York (1981)Google Scholar
  22. 22.
    Guzmán, J.: A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput. 44(2), 156–169 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989)MATHGoogle Scholar
  24. 24.
    Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318–339 (electronic) (2005)Google Scholar
  25. 25.
    Lee, J.J.: Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math. 42(2), 361–376 (2016)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Numerical Methods in Engineering, Wiley, New Jersey (1998)MATHGoogle Scholar
  27. 27.
    Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated solution of differential equations by the finite element method, Lecture Notes in Computational Science and Engineering, vol. 84, Springer, Heidelberg, The FEniCS book (2012)Google Scholar
  28. 28.
    Murad, M.A., Loula, A.F.D.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95(3), 359–382 (1992)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Nédélec, J.-C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3), 315–341 (1980)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbf{R}^3\). Numer. Math. 50(1), 57–81 (1986)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, mathematical aspects of finite element methods. In: Proceedings of Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975, Springer, Berlin, pp. 292–315. Lecture Notes in Math., vol. 606 (1977)Google Scholar
  37. 37.
    Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447–462 (1986)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)MATHCrossRefGoogle Scholar
  41. 41.
    Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)MATHCrossRefGoogle Scholar
  42. 42.
    Yosida, K.: Functional analysis, 6th edn. Springer, Springer Classics in Mathematics, New York (1980)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations