Advertisement

Journal of Scientific Computing

, Volume 69, Issue 1, pp 201–226 | Cite as

Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems

  • Bin Zheng
  • Luoping Chen
  • Xiaozhe Hu
  • Long Chen
  • Ricardo H. Nochetto
  • Jinchao Xu
Article

Abstract

In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigate the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.

Keywords

Fourth order problem Multigrid method GMRes Mass lumping Preconditioner 

Notes

Acknowledgments

B. Zheng would like to acknowledge the support by NSF Grant DMS-0807811 and a Laboratory Directed Research and Development (LDRD) Program from Pacific Northwest National Laboratory. L.P. Chen was supported by the National Natural Science Foundation of China under Grant No. 11501473. L. Chen was supported by NSF Grant DMS-1418934 and in part by NIH Grant P50GM76516. R.H. Nochetto was supported by NSF under Grants DMS-1109325 and DMS-1411808. J. Xu was supported by NSF Grant DMS-1522615 and in part by US Department of Energy Grant DE-SC0014400. Computations were performed using the computational resources of Pacific Northwest National Laboratory (PNNL) Institutional Computing cluster systems. The PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.

References

  1. 1.
    Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972)CrossRefGoogle Scholar
  2. 2.
    Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301–314 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Axelsson, O., Neytcheva, M.: Operator splitting for solving nonlinear, coupled multiphysics problems with application to numerical solution of an interface problem. TR2011-009 Institute for Information Technology, Uppsala University (2011)Google Scholar
  4. 4.
    Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655–675 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baňas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)MathSciNetMATHGoogle Scholar
  8. 8.
    Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part I: mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations, pp. 53–147 (1979)Google Scholar
  21. 21.
    Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)MATHGoogle Scholar
  22. 22.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (2004)CrossRefGoogle Scholar
  23. 23.
    Chen, C.M., Thomée, V.: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B Appl. Math. 26(03), 329–354 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)Google Scholar
  25. 25.
    Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. Submitted (2014)Google Scholar
  26. 26.
    Chen, L.: Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl. 70(12), 2854–2866 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18(1–2), 113–126 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Christon, M.A.: The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng. 173(1), 147–166 (1999)CrossRefMATHGoogle Scholar
  29. 29.
    Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer (1989)Google Scholar
  31. 31.
    Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. J. Comput. Math. 26(6), 767–796 (2008)MathSciNetGoogle Scholar
  38. 38.
    Fried, I.: Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices. Int. J. Solids Struct. 9(9), 1013–1034 (1973)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Volume 55 of Lecture Notes in Computational Science Engineering, pp. 91–102. Springer, Berlin (2007)Google Scholar
  42. 42.
    Greer, J.B., Bertozzi, A.L.: \({H}^{1}\) solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1/2), 349–366 (2004)MathSciNetMATHGoogle Scholar
  43. 43.
    Gresho, P.M., Lee, R.L., Sani, R.L.: Advection-dominated flows, with emphasis on the consequences of mass lumping. Finite Elem. Fluids 1, 335–350 (1978)MATHGoogle Scholar
  44. 44.
    He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 24(6), 1485–1500 (2008)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Hinton, E., Rock, T., Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn. 4(3), 245–249 (1976)CrossRefGoogle Scholar
  47. 47.
    Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286(2), 459–490 (2003)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48 (2009)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Mullen, R., Belytschko, T.: Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng. 18(1), 11–29 (1982)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Niclasen, D.A., Blackburn, H.M.: A comparison of mass lumping techniques for the two-dimensional Navier–Stokes equations.pdf. In: Twelfth Australasian Fluid Mechanics Conference, pp. 731–734. The Univesity of Sydney (1995)Google Scholar
  53. 53.
    Olshanskii, M.A., Reusken, A.: Navier–Stokes equations in rotation form: a robust multigrid solver for the velocity problem. SIAM J. Sci. Comput. 23(5), 1683–1706 (2002)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Quarteroni, A.: On mixed methods for fourth-order problems. Comput. Methods Appl. Mech. Eng. 24(1), 13–34 (1980)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Schöberl, J.: Multigrid methods for a parameter dependent problem in primal variables. Numer. Math. 84, 97–119 (1999)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Sun, Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64(212), 1463–1471 (1995)MathSciNetMATHGoogle Scholar
  57. 57.
    Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Univeristy Press, Princeton (2005)MATHGoogle Scholar
  59. 59.
    Ushijima, T.: On the uniform convergence for the lumped mass approximation of the heat equation. J. Fac. Sci. Univ. Tokyo 24, 477–490 (1977)MathSciNetMATHGoogle Scholar
  60. 60.
    Ushijima, T.: Error estimates for the lumped mass approximation of the heat equation. Mem. Numer. Math. 6, 65–82 (1979)MathSciNetMATHGoogle Scholar
  61. 61.
    Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Wittum, G.: Multigrid methods for Stokes and Navier–Stokes eqautions with transforming smoothers: algorithms and numerical results. Numer. Math. 54(5), 543–563 (1989)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Ye, X., Cheng, X.: The Fourier spectral method for the Cahn–Hilliard equations. Numer. Math. 171(1), 345–357 (2005)MathSciNetMATHGoogle Scholar
  67. 67.
    Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bin Zheng
    • 1
  • Luoping Chen
    • 2
  • Xiaozhe Hu
    • 3
  • Long Chen
    • 4
  • Ricardo H. Nochetto
    • 5
  • Jinchao Xu
    • 6
  1. 1.Fundamental and Computational SciencesPacific Northwest National LaboratoryRichlandUSA
  2. 2.School of MathematicsSouthwest Jiaotong UniversityChengduChina
  3. 3.Department of MathematicsTufts UniversityMedfordUSA
  4. 4.Department of MathematicsUniversity of CaliforniaIrvineUSA
  5. 5.Department of Mathematics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  6. 6.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations