Advertisement

Journal of Scientific Computing

, Volume 65, Issue 3, pp 1039–1064 | Cite as

Theoretical and Numerical Investigation of the Finite Cell Method

  • Monique Dauge
  • Alexander Düster
  • Ernst Rank
Article

Abstract

We present a detailed analysis of the convergence properties of the finite cell method which is a fictitious domain approach based on high order finite elements. It is proved that exponential type of convergence can be obtained by the finite cell method for Laplace and Lamé problems in one, two as well as three dimensions. Several numerical examples in one and two dimensions including a well-known benchmark problem from linear elasticity confirm the results of the mathematical analysis of the finite cell method.

Keywords

Finite element method Finite cell method \(p\)-version of Adaptive quadrature 

References

  1. 1.
    Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: The Finite Cell Method for Elasto-Plastic Problems. Proceedings of the tenth international conference on computational structures technology. civil-comp press, (2010)Google Scholar
  2. 2.
    Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: Performance of different integration schemes in facing discontinuites in the finite cell method. Int. J. Comput. Method 10, 1350002/1–1350002/24 (2013)CrossRefGoogle Scholar
  3. 3.
    Abedian, A., Parvizian, J., Düster, A., Rank, E.: The finite cell method for the J\(_2\) flow theory of plasticity. Finite Elem. Anal. Des. 69, 37–47 (2013)CrossRefGoogle Scholar
  4. 4.
    Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19, 172–203 (1988)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20, 763–781 (1989)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Babuška, I., Guo, B.: Approximation properties of the \(h\)-\(p\) version of the finite element method. Comput. Methods Appl. Mech. Engrg. 133, 319–346 (1996)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Babuška, I., Suri, M.: The \(p\) and \(h\)-\(p\) versions of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Chernov, A., von Petersdorff, T., Schwab, C.: Exponential convergence of \(hp\) quadrature for integral operators with Gevrey kernels. ESAIM Math. Model. Numer. Anal. 45, 387–422 (2011)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978). Studies in Mathematics and its Applications, Vol. 4MATHGoogle Scholar
  11. 11.
    Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015–1250063 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Costabel, M., Dauge, M., Nicaise, S.: Weighted analytic regularity in polyhedra. Comput. Math. Appl. 67, 807–817 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of \(hp\)-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Duczek, S., Joulaian, M., Düster, A., Gabbert, U.: Simulation of Lamb Waves Using the Spectral Cell Method. SPIE smart structures and materials + nondestructive evaluation and health monitoring, vol. 86951U. International Society for Optics and Photonics, USA (2013)Google Scholar
  15. 15.
    Duczek, S., Joulaian, M., Düster, A., Gabbert, U.: Numerical analysis of Lamb waves using the finite and spectral cell method. Int. J. Numer. Methods Eng. 99, 26–53 (2014)CrossRefGoogle Scholar
  16. 16.
    Düster, A., Bröker, H., Rank, E.: The p-version of the finite element method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Eng. 52, 673–703 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Düster, A., Niggl, A., Rank, E.: Applying the \(hp\)-\(d\) version of the FEM to locally enhance dimensionally reduced models. Comput. Methods Appl. Mech. Eng. 196, 3524–3533 (2007)MATHCrossRefGoogle Scholar
  18. 18.
    Düster, A., Parvizian, J., Rank, E.: Topology optimization based on the finite cell method. Proc. Appl. Math. Mech. 10, 151–152 (2010)CrossRefGoogle Scholar
  19. 19.
    Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008)MATHCrossRefGoogle Scholar
  20. 20.
    Düster, A., Rank, E.: Die Finite Cell Methode—Eine Fictitious Domain Methode mit Finite-Element Ansätzen hoher Ordnung. GAMM Rundbrief 2, 6–13 (2011)Google Scholar
  21. 21.
    Düster, A., Sehlhorst, H.-G., Rank, E.: Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput. Mech. 50, 413–431 (2012)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Glowinski, R., Kuznetsov, Y.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 1498–1506 (2007)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Glowinski, R., Pan, T.-W., Périaux, J.: A Least Squares/Fictitious Domain Method for Mixed Problems and Neumann Problems. Boundary value problems for partial differential equations and applications, vol. 29 of RMA Res. Notes Appl. Math. Masson, Paris (1993)Google Scholar
  24. 24.
    Glowinski, R., Pan, T.-W., Périaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111, 283–303 (1994)MATHCrossRefGoogle Scholar
  25. 25.
    Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \({\mathbf{R}}^3\). I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinburgh Sect. A 127, 77–126 (1997)MATHCrossRefGoogle Scholar
  26. 26.
    Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \({\mathbf{R}}^3\). II. Regularity in neighbourhoods of edges. Proc. R. Soc. Edinburgh Sect. A 127, 517–545 (1997)MATHCrossRefGoogle Scholar
  27. 27.
    Guo, B.Q.: The \(h\)-\(p\) version of the finite element method for elliptic equations of order \(2m\). Numer. Math. 53, 199–224 (1988)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements. NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Joulaian, M., Duczek, S., Gabbert, U., Düster, A.: Finite and spectral cell method for wave propagation in heterogeneous materials. Comput. Mech. 54, 661–675 (2014)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Joulaian, M., Düster, A.: Local enrichment of the finite cell method for problems with material interfaces. Comput. Mech. 52, 741–762 (2013)MATHCrossRefGoogle Scholar
  31. 31.
    Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96, 512–528 (2013)CrossRefGoogle Scholar
  32. 32.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Parvizian, J., Düster, A., Rank, E.: Finite cell method h- and p-extension for embedded domain problems in solid mechanics. Comput. Mech. 41, 121–133 (2007)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Parvizian, J., Düster, A., Rank, E.: Topology optimization using the finite cell method. Optim. Eng. 13, 57–78 (2012)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Rank, E.: Adaptive remeshing and h-p domain decomposition. Comput. Methods Appl. Mech. Eng. 101, 299–313 (1992)MATHCrossRefGoogle Scholar
  36. 36.
    Rank, E., Kollmannsberger, S., Sorger, C., Düster, A.: Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput. Methods Appl. Mech. Eng. 200, 3200–3209 (2011)MATHCrossRefGoogle Scholar
  37. 37.
    Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–252, 104–115 (2012)CrossRefGoogle Scholar
  38. 38.
    Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E.: Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95, 811–846 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Saul’ev, V.K.: A method for automatization of the solution of boundary value problems on high performance computers. Dokl. Akad. Nauk SSSR 144: 497–500 (in Russian). English translation in Soviet Math. Dokl. 3(1963), 763–766 (1962)Google Scholar
  40. 40.
    Saul’ev, V.K.: On solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Math. J. 4, 912–925 (1963)MathSciNetGoogle Scholar
  41. 41.
    Schillinger, D., Düster, A., Rank, E.: The \(hp\)-\(d\)-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int. J. Numer. Methods Eng. 89, 1171–1202 (2012)MATHCrossRefGoogle Scholar
  42. 42.
    Schillinger, D., Rank, E.: An unfitted \(hp\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200, 3358–3380 (2011)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., Rank, E.: Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput. Mech. 50, 445–478 (2012)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Schwab, C.: p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  45. 45.
    Stein, E. (ed.): Error-Controlled Adaptive Finite Elements in Solid Mechanics. Wiley, New York (2002)Google Scholar
  46. 46.
    Strang, G.: Variational Crimes in the Finite Element Method. The mathematical foundations of the finite element method with applications to partial differential equations (Proceedings of Symposium, University of Maryland, Baltimore, MD). Academic Press, New York (1972)CrossRefGoogle Scholar
  47. 47.
    Strang, G.: Piecewise polynomials and the finite element method. Bull. Am. Math. Soc. 79, 1128–1137 (1973)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sudhakar, Y., Wall, W.A.: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. 158, 39–54 (2013)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)MATHGoogle Scholar
  50. 50.
    Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M., Garcia, E., Burgkart, R., Rank, E.: Non-standard bone simulation: interactive numerical analysis by computational steering. Comput. Vis. Sci. 14, 207–216 (2012)CrossRefGoogle Scholar
  51. 51.
    Yang, Z., Ruess, M., Kollmannsberger, S., Düster, A., Rank, E.: An efficient integration technique for the voxel-based finite cell method. Int. J. Numer. Methods Eng. 91, 457–471 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Université de Rennes 1RennesFrance
  2. 2.Technische Universität Hamburg-HarburgHamburgGermany
  3. 3.Technische Universität MünchenMunichGermany

Personalised recommendations