Journal of Scientific Computing

, Volume 68, Issue 1, pp 116–142 | Cite as

Asymptotic Analysis and Error Estimates of Mixed Finite Element Method for Brinkman Model



In this paper, we study a one-continuum model approach, so-called Brinkman model, to deal with Navier–Stokes–Darcy coupling problem in which the fluid flow exist in both the open channels and porous media. A parameter re-scaling technique is used to reformulate the traditional Brinkman model to a new one in order to investigate its asymptotic accuracy to Stokes and Darcy’s equations, respectively. We attain the convergence theorem in quantitative measure with respect to the dimensionless permeability parameter. We also analyze the error estimates of mixed finite element method for Brinkman model and Forchheimer model, and obtain the optimal convergence rates for both velocity and pressure. Numerical experiments validate the convergence results with respect to the permeability parameter and mesh size for both Brinkman model and Forchheimer model.


Brinkman model Forchheimer model Navier–Stokes–Darcy coupling Mixed finite element method Asymptotic analysis Optimal convergence 



P. Sun is supported by NSF Grant DMS-1418806.


  1. 1.
    Angot, Ph, Bruneau, Ch-H, Fabrie, P.: A penalization method to take into account obstacles in an incompressible flow. Numer. Math. 81, 497–520 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angot, Ph., Caltagirone, J.P.: New graphical and computational architecture concept for numerical simulation on supercomputers. Proceedings 2nd World Congress on Computational Mechanics, pages 973–976, Stuttgart, (1990)Google Scholar
  3. 3.
    Arquis, E., Caltagirone, J.P.: Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux: application à la convection naturelle. C. R. Acad. Sci. Paris II 299, 1–4 (1984)Google Scholar
  4. 4.
    Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  5. 5.
    Breezi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian problems. RAIRO Anal. Numer. 2, 129–151 (1974)Google Scholar
  6. 6.
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1949)CrossRefMATHGoogle Scholar
  7. 7.
    Bruneau, Ch-H, Mortazavi, I.: Contrôle passif d’écoulements incompressibles autour d’obstacles à l’aide de milieux poreux. C. R. Acad. Sci. Paris IIb 329, 517–521 (2001)Google Scholar
  8. 8.
    Bruneau, Ch-H, Mortazavi, I.: Numerical modelling and passive flow control using porous media. Comput. Fluids 37, 488–498 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Carbou, G.: Brinkman model and double penalization method for the flow around a porous thin layer. J. Math. Fluid Mech. 10, 126–158 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15(150), 32–48 (1937)Google Scholar
  12. 12.
    Chen, N., Gunzburger, M., Wang, X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system. J. Math. Anal. Appl. 368, 658–676 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Childress, S.: Viscous flow past a random array of spheres. J. Chem. Phys. 56, 2527–2539 (1972)CrossRefGoogle Scholar
  14. 14.
    Durlofsky, L., Brady, J.F.: Analysis of the brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)CrossRefMATHGoogle Scholar
  15. 15.
    Freed, K.F., Muthukumar, M.: On the Stokes problem for a suspension of spheres at finite concentrations. J. Chem. Phys. 68, 2088–2096 (1978)CrossRefGoogle Scholar
  16. 16.
    He, W., Yi, J.S., Nguyen, T.: Two-phase flow model of the cathode of PEM fuel cell using interdigitated flow fields. AIChE J. 46(10), 2053–2064 (2000)CrossRefGoogle Scholar
  17. 17.
    Hinch, E.J.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720 (1977)CrossRefMATHGoogle Scholar
  18. 18.
    Howells, I.D.: Drag due to the motion of a Kewtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64, 449–475 (1974)CrossRefMATHGoogle Scholar
  19. 19.
    Jager, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jones, I.: Reynolds number flow past a porous spherical shell. Soc. Proc. Camb. Philos. 73, 231–238 (1973)CrossRefMATHGoogle Scholar
  21. 21.
    Kim, S., Russel, W.B.: Modelling of porous media by renormalization of the Stokes equations. J. Fliud Mech. 154, 269–286 (1985)CrossRefMATHGoogle Scholar
  22. 22.
    Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liu, F.Q., Wang, C.-Y.: Mixed potential in a direct methanol fuel cell modeling and experiments. J. Electrochem. Soc. 154, B514–B522 (2007)CrossRefGoogle Scholar
  24. 24.
    Liu, W., Wang, C.-Y.: Three-dimensional simulations of liquid feed direct methanol fuel cells. J. Electrochem. Soc. 154, B352–B361 (2007)CrossRefGoogle Scholar
  25. 25.
    Mehdaoui, R., Elmir, M., Draoui, B., Imine, O., Mojtabi, A.: Comparative study between the Darcy–Brinkman model and the modified Navier–Stokes equations in the case of natural convection in a porous cavity. Leonardo J. Sci. 12, 121–134 (2008)Google Scholar
  26. 26.
    Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Muthukumar, M., Freed, K.F.: On the Stokes problem for a suspension of spheres at nonzero concentration. II. Calculations for effective medium theory. J. Chem. Phys. 70, 5875 (1979)CrossRefGoogle Scholar
  29. 29.
    Nield, D.A.: The boundary correction for the Rayleigh–Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pasaogullari, U., Mukherjee, P., Wang, C.-Y., Chen, K.: Anisotropic heat and water transport in a pefc cathode gas diffusion layer. J. Electrochem. Soc. 154, B823–B834 (2007)CrossRefGoogle Scholar
  31. 31.
    Pasaogullari, U., Wang, C.-Y.: Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A399–A406 (2004)CrossRefGoogle Scholar
  32. 32.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)MATHGoogle Scholar
  33. 33.
    Rubinstein, J.: Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170, 379–383 (1986)CrossRefMATHGoogle Scholar
  34. 34.
    Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)Google Scholar
  35. 35.
    Shi, Z., Wang, X.: Comparison of Darcy’s law, the Brinkman equation, the modified N–S equation and the pure diffusion equation in PEM fuel cell modeling. In: COMSOL Conference (2007)Google Scholar
  36. 36.
    Sun, P.: Modeling studies and efficient numerical methods for proton exchange membrane fuel cell. Comput. Methods Appl. Mech. Eng. 200, 3324–3340 (2011)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Tam, C.K.W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537 (1969)CrossRefMATHGoogle Scholar
  38. 38.
    Wang, C.-Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004)CrossRefGoogle Scholar
  39. 39.
    Wang, C.-Y., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media I. Model development. Int. J. Heat Mass Transf. 39, 3607–3618 (1996)CrossRefGoogle Scholar
  40. 40.
    Wang, C.-Y., Cheng, P.: Multiphase flow and heat transfer in porous media. Adv. Heat Transf. 30, 93–196 (1997)CrossRefGoogle Scholar
  41. 41.
    Wang, C.-Y., Wang, Z.H., Pan, Y.: Two-phase transport in proton exchange membrane fuel cells. In: International Mechanical Engineering Congress and Exhibits, Nashville, TN (1999)Google Scholar
  42. 42.
    Wang, Z.H., Wang, C.-Y., Chen, K.S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of Nevada Las VegasLas VegasUSA

Personalised recommendations