Skip to main content
Log in

Fast High-Order Compact Exponential Time Differencing Runge–Kutta Methods for Second-Order Semilinear Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose fast high-order numerical methods for solving a class of second-order semilinear parabolic equations in regular domains. The proposed methods are explicit in nature, and use exponential time differencing and Runge–Kutta approximations in combination with a linear splitting technique to achieve accurate and stable time integration. A two-step compact difference scheme is employed for spatial discretization to obtain fourth-order accuracy and make use of FFT-based fast calculations. Such methods can be applied to problems with stiff nonlinearities and boundary conditions of Dirichlet or periodic types. Linear stability analysis and various numerical experiments are also presented to demonstrate accuracy and stability of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  2. Certaine, J.: The solution of ordinary differential equations with large time constants. Mathematical methods for digital computers, pp. 128–132. Wiley, New York (1960)

  3. Caplan, R.M., Carretero-Gonzalez, R.: A two-step high-order compact scheme for the Laplacian operator and its implementation in an explicit method for integrating the nonlinear schrödinger equation. J. Comput. Appl. Math. 251, 33–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn, J.W., Hillard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  5. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvo, M.P., Portillo, A.M.: Variable step implementation of ETD methods for semilinear problems. Appl. Math. Comput. 196, 627–637 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Chen, L.-Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108, 147–158 (1998)

    Article  MATH  Google Scholar 

  8. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Zhu, W.-X.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45, 307–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1996)

    MATH  Google Scholar 

  12. Hochbrucky, M., Lubich, C.: vOn Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 19, 209–286 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations ii: Stiff and Differential Algebraic Problems. Springer, New York (1999)

  17. Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Dis. Cont. Dyn. Sys. B 19, 1667–1687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ju, L., Zhang, J., Du, Q.: Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput. Mater. Sci. 108, 272–282 (2015)

    Article  Google Scholar 

  20. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations. J. Sci. Comput. 62, 431–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lawson, J.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–390 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform, SIAM (1992)

  25. Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection. Euro. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pope, D.: An exponential method of numerical integration of ordinary differential equations. Comm. ACM 6, 491–493 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qiao, Z., Sun, Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comp. 84, 653–674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spotz, W.F., Carey, G.F.: Extension of high-order compact schemes to time-dependent problems. Numer. Meth. PDEs 17, 657–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland (1977)

  33. Whalen, P., Brio, M., Moloney, J.V.: Exponential time-differencing with embedded Runge–Kutta adaptive step control. J. Comput. Phys. 280, 579–601 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 258, 585–600 (2014)

    Article  MathSciNet  Google Scholar 

  35. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, X., Feng, J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Ju.

Additional information

L. Zhu’s research is partially supported by China Fundamental Research of Civil Aircraft under grant number MJ-F-2012-04. L. Ju’s research is partially supported by US National Science Foundation under grant numbers DMS-1521965 and DMS-1215659 and by US Department of Energy under grant number DE-SC0008087-ER65393. W. Zhao’s research is partially supported by National Natural Science Foundation of China under Grant Number 11171189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Ju, L. & Zhao, W. Fast High-Order Compact Exponential Time Differencing Runge–Kutta Methods for Second-Order Semilinear Parabolic Equations. J Sci Comput 67, 1043–1065 (2016). https://doi.org/10.1007/s10915-015-0117-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0117-1

Keywords

Mathematics Subject Classification

Navigation