Skip to main content
Log in

Modified Non-linear Weights for Fifth-Order Weighted Essentially Non-oscillatory Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with fifth-order weighted essentially non-oscillatory (WENO) scheme with a new smoothness indicator. As the so-called WENO-JS scheme (Jiang and Shu in J Comput Phys 126:202–228, 1996) provides the third-order accuracy at critical points where the first and third order derivatives do not becomes zero simultaneously, several fifth-order WENO scheme have been developed through modifying the known smoothness indicators of WENO-JS. Recently a smoothness indicator based on \(L^1\)-norm has been proposed by Ha et al. (J Comput Phys 232:68–86, 2013) (denoted by WENO-NS). The aim of this paper is twofold. Firstly, we further improve the smoothness indicator of WENO-NS and secondly, using this measurement, we suggest new nonlinear weights by simplifying WENO-NS weights. The proposed WENO scheme provides the fifth-order accuracy, even at critical points. Some numerical experiments are provided to demonstrate that the present scheme performs better than other WENO schemes of the same order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock–turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal. 49(2), 893–915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S., Shu, C.W.: Monotonicity prserving WENO schemes with increasingly high-order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204, 209–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very-high-order WENO schemes. J. Comput. Phys. 228, 8481–8524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glimm, J., Grove, J., Li, X., Oh, W., Tan, D.C.: The dynamics of bubble growth for Rayleigh–Taylor unstable interfaces. Phys. Fluids 31, 447–465 (1988)

    Article  Google Scholar 

  10. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high-order accurate non-oscillatory schemes. III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  14. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, Y., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.W. : Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin/New York (1998)

  21. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  25. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Young, Y.-N., Tufo, H., Dubey, A., Rosner, R.: On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377–408 (2001)

    Article  MATH  Google Scholar 

  27. Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227, 1306–1339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Jungho Yoon was supported by the Grant 2015-R1A5A1009350 through the National Research Foundation of Korea (NRF). Youngsoo Ha was supported by NRF-2013R1A1A2013793 and Chang Ho Kim was by NRF-2014M1A7A1A03029872 through the National R&D Program funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.H., Ha, Y. & Yoon, J. Modified Non-linear Weights for Fifth-Order Weighted Essentially Non-oscillatory Schemes. J Sci Comput 67, 299–323 (2016). https://doi.org/10.1007/s10915-015-0079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0079-3

Keywords

Mathematics Subject Classification

Navigation