Journal of Scientific Computing

, Volume 65, Issue 3, pp 1129–1144 | Cite as

A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem



We study the numerical approximation of nematic liquid crystal flows governed by a Ericksen–Leslie problem. This problem couples the incompressible Navier–Stokes dynamic with a gradient flow system related to the orientation unitary vector of molecules. First, a two sub-step viscosity-splitting time scheme is proposed. The first sub-step couples diffusion and convection terms whereas the second one is concerned with diffusion terms and constraints (divergence free and unit director field). Then, in the first sub-step we use a Gauss–Seidel decoupling algorithm, and in the second sub-step, we use Uzawa type algorithms on augmented Lagrangian functionals to overcome the divergence free and the unit director field constraints. From the computational point of view, it is a fully decoupled linear scheme (where all systems to solve are for scalar variables). Some numerical experiments in 2D domains are carried out by using only linear finite elements in space, confirming at least numerically the viability and the convergence of our scheme.


Ericksen–Leslie’s nematic model Splitting in time schemes Augmented Lagrangian Mixed formulation 



The authors are very grateful to the anonymous referees for their helpful and valuable suggestions and remarks, which greatly improved the earlier version of this paper.


  1. 1.
    Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230, 1686–1706 (2011)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Blasco, J., Codina, R.: Error estimates for an operator-splitting method for incompressible flows. Appl. Numer. Math. 51, 1–17 (2004)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. Studies in Applied Mathematics. SIAM, Philadelphia (1989)CrossRefGoogle Scholar
  5. 5.
    Glowinski, R., Lin, P., Pan, X.-B.: An operator-splitting method for a liquid crystal model. Comput. Phys. Comm. 152, 242–252 (2003)CrossRefGoogle Scholar
  6. 6.
    Glowinski, R., Pan, T.W., Periaux, J.: Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput. Methods Appl. Mech. Eng. 151, 181–184 (1998)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Eng. 184, 241–267 (2000)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, Berlin (1986)MATHCrossRefGoogle Scholar
  9. 9.
    Girault, V., Guillén-González, F.: Mixed formulation, approximation and decoupling algorithm for a nematic liquid crystals model. Math. Comput. 80(274), 781–819 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Guillén-González, F., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. ESAIM: M2AN 47(5), 1433–1464 (2013)MATHCrossRefGoogle Scholar
  11. 11.
    Guillén-González, F., Redondo-Neble, M.V.: New error estimates for a viscosity-splitting scheme in time for the three-dimensional Navier–Stokes equations. IMA J. Numer. Anal. 31(2), 556–579 (2011)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Guillén-González, F., Redondo-Neble, M.V.: Spatial error estimates for a finite element viscosity-splitting scheme for the Navier–Stokes equations. Int. J. Numer. Anal. Methods 10(4), 826–844 (2013)MATHGoogle Scholar
  13. 13.
    Koko, J.: Calcul Scientifique avec Matlab. Elippses, Paris (2009)Google Scholar
  14. 14.
    Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: a \(C^0\) finite element approach. J. Comput. Phys. 215, 348–362 (2006)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, C., Walkington, N.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 726–741 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, C., Walkington, N.: Mixed methods for the approximation of liquid crystal flows. M2AN 36(2), 205–222 (2002)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Prohl, A.: Computational micro-magnetism. Advances in Numerical Mathematics. Teubner, Stuttgart (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de Ecuaciones Diferenciales y Análisis Numérico and IMUSUniversidad de SevillaSevilleSpain
  2. 2.ISIMA/LIMOSUniversité Blaise Pascal – CNRS UMR 6158Aubière CedexFrance

Personalised recommendations