Advertisement

Journal of Scientific Computing

, Volume 65, Issue 2, pp 598–621 | Cite as

Max-Norm Stability of Low Order Taylor–Hood Elements in Three Dimensions

  • Johnny Guzmán
  • Manuel A. Sánchez
Article

Abstract

We prove stability in \(W^{1,\infty }(\Omega )\) and \(L^\infty (\Omega )\) for the velocity and pressure approximations, respectively, using the lowest-order Taylor–Hood finite element spaces to solve the three dimensional Stokes problem. The domain \(\Omega \) is assumed to be a convex polyhedra.

Keywords

Maximum norm Finite element Optimal error estimates Stokes 

Mathematics Subject Classification

65N30 65N15 

References

  1. 1.
    Arnold, D.N., Liu, X.B.: Local error estimates for finite element discretizations of the Stokes equations. RAIRO Modél. Math. Anal. Numér 29(3), 367–389 (1995)MATHGoogle Scholar
  2. 2.
    Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664–670 (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44(1), 1–28 (2006). (electronic)MATHCrossRefGoogle Scholar
  4. 4.
    Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989)MATHCrossRefGoogle Scholar
  5. 5.
    Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80(273), 1–9 (2011)MATHCrossRefGoogle Scholar
  6. 6.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)MATHCrossRefGoogle Scholar
  7. 7.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. (9) 84(3), 279–330 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Girault, V., Scott, L.R.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1–19 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). Theory and algorithmsGoogle Scholar
  11. 11.
    Guzmán, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comp. 81(280), 1879–1902 (2012)MATHCrossRefGoogle Scholar
  12. 12.
    Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.H.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112(2), 221–243 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Maz’ya, V., Rossmann, J.: Pointwise estimates for Green’s kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone. Math. Nachr. 278(15), 1766–1810 (2005)MATHCrossRefGoogle Scholar
  14. 14.
    Maz’ya, V.G., Plamenevskiĭ, B.A.: The first boundary value problem for classical equations of mathematical physics in domains with piecewise-smooth boundaries. I. Z. Anal. Anwendungen 2(4), 335–359 (1983)MATHGoogle Scholar
  15. 15.
    Maz’ya, V.G., Plamenevskiĭ, B.A.: The first boundary value problem for classical equations of mathematical physics in domains with piecewise smooth boundaries. II. Z. Anal. Anwendungen 2(6), 523–551 (1983)MATHGoogle Scholar
  16. 16.
    Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains, volume 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)CrossRefGoogle Scholar
  17. 17.
    Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz–Galerkin methods. Math. Comput. 28, 937–958 (1974)MATHCrossRefGoogle Scholar
  18. 18.
    Rossmann, J.: Green’s matrix of the Stokes system in a convex polyhedron. Rostock. Math. Kolloq. 65, 15–28 (2010)MATHGoogle Scholar
  19. 19.
    Roßmann, J.: Hölder estimates for Green’s matrix of the Stokes system in convex polyhedra. In: Around the Research of Vladimir Maz’ya. II, volume 12 of International Mathematical Series (N.Y.), pp. 315–336. Springer, New York (2010)Google Scholar
  20. 20.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods. II. Math. Comput. 64(211), 907–928 (1995)MATHGoogle Scholar
  21. 21.
    Scott, R.L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations