Advertisement

Journal of Scientific Computing

, Volume 63, Issue 1, pp 256–278 | Cite as

Topological Derivative for the Inverse Conductivity Problem: A Bayesian Approach

  • J. Rocha de Faria
  • D. Lesnic
Article

Abstract

The employment of topological derivative concept is considered to propose a new optimization algorithm for the inverse conductivity problem. Since this inverse problem is nonlinear and ill-posed it is necessary to incorporate a prior knowledge about the unknown conductivity. In particular, we apply the Bayes theorem to add the assumption that we have just one small ball-shaped inclusion, which must be at a certain distance from the boundary of the domain. As the main emphasis of this paper is to investigate numerically the proposed approach, we shall use the meshless method of fundamental solutions to present some numerical results.

Keywords

Inverse conductivity problem Topological derivative  Method of fundamental solutions Bayesian inversion 

Notes

Acknowledgments

The first author would like to thank CNPq-Science without Borders program for the financial support in this research. The hospitality shown by the University of Leeds is also gratefully acknowledged. The comments made by the referee are gratefully acknowledged.

References

  1. 1.
    Alves, C.J., Colaço, M.J., Leitão, V.M.A., Martins, N.F.M., Orlande, H.R.B., Roberty, N.C.: Recovering the source term in a linear diffusion problem by the method of fundamental solutions. Inverse Probl. Sci. Eng. 16, 1005–1021 (2005)CrossRefGoogle Scholar
  2. 2.
    Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements, 429 pages. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 3.
    Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Berger, J.R., Karageorghis, A.: The method of fundamental solutions for heat conduction in layered materials. Int. J. Numer. Meth. Eng. 45, 1681–1694 (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Bonnet, M.: Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions. Int. J. Solids Struct. 46, 2275–2292 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ciulli, S., Pidcock, M.K., Sebu, C.: An integral equation method for the inverse conductivity problem. Phys. Lett. A 325, 253–267 (2004)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Comino, L., Gallego, R., Rus, G.: Combining topological sensitivity and genetic algorithms for identification inverse problems in anisotropic materials. Comput. Mech. 41, 231–242 (2007)CrossRefGoogle Scholar
  9. 9.
    Eschenauer, H., Kobelev, V., Schumacher, A.: Bubble method for topology and shape optimization of structures. J. Struct. Optim. 8, 42–51 (1994)CrossRefGoogle Scholar
  10. 10.
    Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)MATHGoogle Scholar
  12. 12.
    Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36, 235–265 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Idier, J. (ed.): Bayesian Approach to Inverse Problems, 381 pp. ISTE, London (2008)Google Scholar
  14. 14.
    Isakov, V.: Inverse Problems for Partial Diferential Equations, 284 pp. Springer, New York (1998)CrossRefGoogle Scholar
  15. 15.
    Isakov, V., Powell, J.: On inverse conductivity problem with one measurement. Inverse Probl. 6, 311–318 (1990)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Jin, B., Marin, L.: The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int. J. Numer. Meth. Eng. 69, 1570–1589 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, 339 pp. Springer, New York (2005)Google Scholar
  18. 18.
    Kang, H., Seo, J.K.: The layer potential technique for the inverse conductivity problem. Inverse Probl. 12, 267–278 (1996)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Karageorghis, A., Lesnic, D.: The method of fundamental solutions for the inverse conductivity problem. Inverse Probl. Sci. Eng. 18, 567–583 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Probl. Sci. Eng. 19, 309–336 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Knowles, I.: A variational algorithm for electrical impedance tomography. Inverse Probl. 14, 1513–1525 (1998)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kohn, R.V., McKenney, A.: Numerical implementation of a variational method for electrical impedance tomography. Inverse Probl. 6, 389–414 (1990)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kohn, R., Vogelius, M.: Relaxation of a varional method for impedance computed tomography. Comm. Pure Appl. Math. 40(6), 745–777 (1987)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kozlov, V.A., Maz’ya, V.G., Movchan, A.B.: Asymptotic Analysis of Fields in Multi-Structures, 282 pp. Clarendon Press, Oxford (1999)Google Scholar
  25. 25.
    Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. U.S.S.R. Comput. Math. Math. Phys. 4, 82–126 (1964)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Lesnic, D.: A numerical investigation of the inverse potential conductivity problem in a circular inclusion. Inverse Probl. Eng. 9, 1–17 (2001)CrossRefGoogle Scholar
  27. 27.
    Marin, L., Elliott, L., Ingham, D.B., Lesnic, D.: The boundary element method for the numerical recovery of a circular inhomogeneity in an elliptic equation. Eng. Anal. Boundary Elem. 28, 413–419 (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)CrossRefMATHGoogle Scholar
  29. 29.
    Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization, 412 pp. Springer, Berlin (2012)Google Scholar
  30. 30.
    Ramachandran, P.A.: Method of fundamental solutions: singular value decomposition analysis. Commun. Numer. Methods Eng. 18, 789–801 (2002)CrossRefMATHGoogle Scholar
  31. 31.
    Rocha de Faria, J., Novotny, A.A., Feijóo, R.A., Taroco, E.: First- and second-order topological sensitivity analysis for inclusions. Inverse Probl. Sci. Eng. 17, 665–679 (2009)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Rocha de Faria, J., Novotny, A.A.: On the second order topological asymptotic expansion. Struct. Multi. Optim. 39(6), 547–555 (2009)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Sokołowski, J., Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numerica 19, 451–559 (2010)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Wang, J., Zabaras, N.: Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Probl. 21, 185–206 (2005)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de Computação CientíficaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Department of Applied MathematicsUniversity of LeedsLeeds UK

Personalised recommendations