Advertisement

Journal of Scientific Computing

, Volume 61, Issue 1, pp 196–221 | Cite as

Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods

  • Jun Hu
  • Yunqing Huang
  • Qun Lin
Article

Abstract

The paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The conclusion is that if local approximation properties of nonconforming finite element spaces are better than total errors (sums of global approximation errors and consistency errors) of nonconforming finite element methods, corresponding methods will produce lower bounds for eigenvalues. More precisely, under three conditions on continuity and approximation properties of nonconforming finite element spaces we analyze abstract error estimates of approximate eigenvalues and eigenfunctions. Subsequently, we propose one more condition and prove that it is sufficient to guarantee nonconforming finite element methods to produce lower bounds for eigenvalues of symmetric elliptic operators. We show that this condition hold for most low-order nonconforming finite elements in literature. In addition, this condition provides a guidance to modify known nonconforming elements in literature and to propose new nonconforming elements. In fact, we enrich locally the Crouzeix-Raviart element such that the new element satisfies the condition; we also propose a new nonconforming element for second order elliptic operators and prove that it will yield lower bounds for eigenvalues. Finally, we prove the saturation condition for most nonconforming elements.

Keywords

Lower bound Nonconforming element Eigenvalue  Elliptic operator 

Mathematics Subject Classification

65N30 65N15 35J25 

References

  1. 1.
    Armentano, M.G., Duran, R.G.: Mass-lumping or not mass-lumping for eigenvalue problem. Numer. Methods PDEs 19, 653–664 (2003)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)MATHMathSciNetGoogle Scholar
  3. 3.
    Babus̆ka, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Babus̆ka, I., Strouboulis, T.: The finite element method and its reliability. Oxford Science Publications, Oxford (2000)Google Scholar
  5. 5.
    Babus̆ka, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, VII: Finite Element Methods (Part I). Elsevier, Amsterdam (1991)Google Scholar
  6. 6.
    Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  7. 7.
    Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19, 1–120 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Brenner, S.: Poincaré-Friedrichs inequality for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Brenner, S.C., Scott, L.R.: The Mathematical Theorey of Finite Element Methods. Springer, Berlin (1996)Google Scholar
  10. 10.
    Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problem. Numer. Math. 118, 401–427 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chen, H.S., Li, B.: Superconvergence analysis and error expansion for the Wilson nonconforming finite element. Numer. Math. 69, 125–140 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)MathSciNetGoogle Scholar
  14. 14.
    Davydov, O.: Stable local bases for multivariate spline space. J. Approx. Theory 111, 267–297 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)CrossRefMathSciNetGoogle Scholar
  16. 16.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Forsythe, G.E.: Asymptotic lower bounds for the frequencies of certain polygonal membranes. Pacific J. Math. 4, 467–480 (1954)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Forsythe, G.E.: Asymptotic lower bounds for the fundamental frequency of convex membranes. Pacific J. Math. 4, 691–702 (1954)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hu, J., Huang, Y.Q., Shen, H.M.: The lower approximation of eigenvalue by lumped mass finite element methods. J. Comput. Math. 22, 545–556 (2004)MATHMathSciNetGoogle Scholar
  21. 21.
    Hu, J., Shi, Z.C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hu, J., Shi, Z.C.: The lower bound of the error estimate in the \(L^2\) norm for the Adini element of the biharmonic equation. arXiv:1211.4677 [math.NA] (2012)
  23. 23.
    Křížek, M., Roos, H., Chen, W.: Two-sided bounds of the discretizations error for finite elements. ESAIM: M2AN 45, 915–924 (2011)CrossRefMATHGoogle Scholar
  24. 24.
    Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 1, 9–53 (1975)MathSciNetGoogle Scholar
  25. 25.
    Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30, 195–200 (2008)MATHMathSciNetGoogle Scholar
  26. 26.
    Li, Y.A.: The analysis of the lower approximation of eigenvalue by the Wilson element. Adv. Appl. Math. Mech. 3, 598–610 (2011)MATHMathSciNetGoogle Scholar
  27. 27.
    Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues for \(-\triangle u=\lambda \rho u\) by nonconforming elements. Math. Comput. 77, 2061–2084 (2008)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues by Wilson’s element. J. Comput. Appl. Math. 225, 213–226 (2009)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Lin, Q., Tobiska, L., Zhou, A.: On the superconvergence of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvements. Science Press, Beijing (2006)Google Scholar
  31. 31.
    Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chinese J. Numer. Meth. Comput. Appl. 2, 81–91 (2005)MathSciNetGoogle Scholar
  32. 32.
    Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)Google Scholar
  33. 33.
    Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDEs 8, 97–111 (1992)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Shi, Z.C.: A remark on the optimal order of convergence of Wilson nonconforming element. Math. Numer. Sin. 8, 159–163 (1986). (in Chinese)MATHGoogle Scholar
  36. 36.
    Shi, Z.C., Wang, M.: The Finite Element Method. Science Press, Beijing (2010). (in Chinese)Google Scholar
  37. 37.
    Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)MATHGoogle Scholar
  38. 38.
    Wang, M., Xu, J.C.: Minimal finite-element spaces for 2m-th order partial differential equations in \(R^n\). Math. Comp. 82, 25–43 (2013)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Weiberger, H.F.: Upper and lower bounds by finite difference methods. Comm. Pure Appl. Math. 9, 613–623 (1956)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Weiberger, H.F.: Lower bounds for higher eigenvalues by finite difference methods. Pacific J. Math. 8, 339–368 (1958)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Widlund, O.: On best error bounds for approximation by piecewise polynomial functions. Numer. Math. 27, 327–338 (1977)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement methods. In: Fenves, S.J. (ed.) Numerical and Computer Methods in Structural Mechanics, pp. 43–57. Academic Press, New York (1973)CrossRefGoogle Scholar
  43. 43.
    Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)MATHMathSciNetGoogle Scholar
  44. 44.
    Yang, Y.D., Bi, H.: Lower spectral bounds by Wilson’s brick discretization eigen-value. Appl. Numer. Math. 60, 782–787 (2010)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Yang, Y.D., Lin, F.B., Zhang, Z.M.: N-simplex Crouzeix-Raviart element for second order elliptic/eigenvalue problems. Int. J. Numer. Anal. Model. 6, 615–626 (2009)MathSciNetGoogle Scholar
  46. 46.
    Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Science in China: Mathematics 53, 137–150 (2010)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Yang, Y.D., Lin, Q., Bi, H., Li, Q.: Lower eigenvalues approximation by Morley elements. Adv. Comput. Math. 36, 443–450 (2012)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s elements. Chinese J. Num. Math. Appl. 29, 81–84 (2007)MathSciNetGoogle Scholar
  49. 49.
    Zienkiewicz, O.C., Cheung, Y.K.: The Finite Element Method in Structrural and Continuum Mechanics. McGraw-Hill, New York (1967)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LMAM and School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  2. 2.Hunan Key Laboratory for Computation and Simulation in Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations