Skip to main content
Log in

Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The conclusion is that if local approximation properties of nonconforming finite element spaces are better than total errors (sums of global approximation errors and consistency errors) of nonconforming finite element methods, corresponding methods will produce lower bounds for eigenvalues. More precisely, under three conditions on continuity and approximation properties of nonconforming finite element spaces we analyze abstract error estimates of approximate eigenvalues and eigenfunctions. Subsequently, we propose one more condition and prove that it is sufficient to guarantee nonconforming finite element methods to produce lower bounds for eigenvalues of symmetric elliptic operators. We show that this condition hold for most low-order nonconforming finite elements in literature. In addition, this condition provides a guidance to modify known nonconforming elements in literature and to propose new nonconforming elements. In fact, we enrich locally the Crouzeix-Raviart element such that the new element satisfies the condition; we also propose a new nonconforming element for second order elliptic operators and prove that it will yield lower bounds for eigenvalues. Finally, we prove the saturation condition for most nonconforming elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Armentano, M.G., Duran, R.G.: Mass-lumping or not mass-lumping for eigenvalue problem. Numer. Methods PDEs 19, 653–664 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Babus̆ka, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)

    Article  MathSciNet  Google Scholar 

  4. Babus̆ka, I., Strouboulis, T.: The finite element method and its reliability. Oxford Science Publications, Oxford (2000)

    Google Scholar 

  5. Babus̆ka, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, VII: Finite Element Methods (Part I). Elsevier, Amsterdam (1991)

    Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  7. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19, 1–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenner, S.: Poincaré-Friedrichs inequality for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theorey of Finite Element Methods. Springer, Berlin (1996)

    Google Scholar 

  10. Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problem. Numer. Math. 118, 401–427 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, H.S., Li, B.: Superconvergence analysis and error expansion for the Wilson nonconforming finite element. Numer. Math. 69, 125–140 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  14. Davydov, O.: Stable local bases for multivariate spline space. J. Approx. Theory 111, 267–297 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  16. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  17. Forsythe, G.E.: Asymptotic lower bounds for the frequencies of certain polygonal membranes. Pacific J. Math. 4, 467–480 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forsythe, G.E.: Asymptotic lower bounds for the fundamental frequency of convex membranes. Pacific J. Math. 4, 691–702 (1954)

    Article  MathSciNet  Google Scholar 

  19. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu, J., Huang, Y.Q., Shen, H.M.: The lower approximation of eigenvalue by lumped mass finite element methods. J. Comput. Math. 22, 545–556 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Hu, J., Shi, Z.C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu, J., Shi, Z.C.: The lower bound of the error estimate in the \(L^2\) norm for the Adini element of the biharmonic equation. arXiv:1211.4677 [math.NA] (2012)

  23. Křížek, M., Roos, H., Chen, W.: Two-sided bounds of the discretizations error for finite elements. ESAIM: M2AN 45, 915–924 (2011)

    Article  MATH  Google Scholar 

  24. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 1, 9–53 (1975)

    MathSciNet  Google Scholar 

  25. Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30, 195–200 (2008)

    MATH  MathSciNet  Google Scholar 

  26. Li, Y.A.: The analysis of the lower approximation of eigenvalue by the Wilson element. Adv. Appl. Math. Mech. 3, 598–610 (2011)

    MATH  MathSciNet  Google Scholar 

  27. Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues for \(-\triangle u=\lambda \rho u\) by nonconforming elements. Math. Comput. 77, 2061–2084 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues by Wilson’s element. J. Comput. Appl. Math. 225, 213–226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lin, Q., Tobiska, L., Zhou, A.: On the superconvergence of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvements. Science Press, Beijing (2006)

    Google Scholar 

  31. Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chinese J. Numer. Meth. Comput. Appl. 2, 81–91 (2005)

    MathSciNet  Google Scholar 

  32. Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  33. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDEs 8, 97–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shi, Z.C.: A remark on the optimal order of convergence of Wilson nonconforming element. Math. Numer. Sin. 8, 159–163 (1986). (in Chinese)

    MATH  Google Scholar 

  36. Shi, Z.C., Wang, M.: The Finite Element Method. Science Press, Beijing (2010). (in Chinese)

    Google Scholar 

  37. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  38. Wang, M., Xu, J.C.: Minimal finite-element spaces for 2m-th order partial differential equations in \(R^n\). Math. Comp. 82, 25–43 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Weiberger, H.F.: Upper and lower bounds by finite difference methods. Comm. Pure Appl. Math. 9, 613–623 (1956)

    Article  MathSciNet  Google Scholar 

  40. Weiberger, H.F.: Lower bounds for higher eigenvalues by finite difference methods. Pacific J. Math. 8, 339–368 (1958)

    Article  MathSciNet  Google Scholar 

  41. Widlund, O.: On best error bounds for approximation by piecewise polynomial functions. Numer. Math. 27, 327–338 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement methods. In: Fenves, S.J. (ed.) Numerical and Computer Methods in Structural Mechanics, pp. 43–57. Academic Press, New York (1973)

    Chapter  Google Scholar 

  43. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MATH  MathSciNet  Google Scholar 

  44. Yang, Y.D., Bi, H.: Lower spectral bounds by Wilson’s brick discretization eigen-value. Appl. Numer. Math. 60, 782–787 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Yang, Y.D., Lin, F.B., Zhang, Z.M.: N-simplex Crouzeix-Raviart element for second order elliptic/eigenvalue problems. Int. J. Numer. Anal. Model. 6, 615–626 (2009)

    MathSciNet  Google Scholar 

  46. Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Science in China: Mathematics 53, 137–150 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yang, Y.D., Lin, Q., Bi, H., Li, Q.: Lower eigenvalues approximation by Morley elements. Adv. Comput. Math. 36, 443–450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s elements. Chinese J. Num. Math. Appl. 29, 81–84 (2007)

    MathSciNet  Google Scholar 

  49. Zienkiewicz, O.C., Cheung, Y.K.: The Finite Element Method in Structrural and Continuum Mechanics. McGraw-Hill, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Additional information

The first author was supported by the NSFC Project 11271035; the second author was supported by NSFC the Key Project 11031006, IRT1179 of PCSIRT and 2010DFR00700.

Appendix A: The Comment for the Saturation Condition of the Singular Case

Appendix A: The Comment for the Saturation Condition of the Singular Case

We need the concept of the interpolation space. Let \(X\), \(Y\) be a pair of normed linear spaces. We shall assume that \(Y\) is continuously embedded in \(X\) with \(Y\subset X\) and \(\Vert \cdot \Vert _X\lesssim \Vert \cdot \Vert _Y\). For any \(t\ge 0\), we define the \(K-\)functional

$$\begin{aligned} K(f,t)=K(f,t,X,Y)=\inf \limits _{g\in Y}\Vert f-g\Vert _X+t|g|_Y, \end{aligned}$$
(10.1)

where \(\Vert \cdot \Vert _X\) is the norm on \(X\) and \(|\cdot |_Y\) is a semi-norm on \(Y\). The function \(K(f,.)\) is defined on \({\mathbb {R}}_+\) and is monotone and concave (being the pointwise infimum of linear functions). If \(0<\theta <1\) and \(1<q\le \infty \), the interpolation space \((X,Y)_{\theta , q}\) is defined as the set of all functions \(f\in X\) such that [6, 15, 16]

$$\begin{aligned} |f|_{(X,Y)_{\theta , q}}=\left\{ \begin{array}{l} (\sum \limits _{k=0}^{\infty }[2^{(s+\epsilon )k\theta }K(f,2^{-k(s+\epsilon )})]^q)^{1/q},\quad 0<q<\infty ,\\ \sup \limits _{k\ge 0}2^{k(s+\epsilon )\theta }K(f, 2^{-k(s+\epsilon )}), \quad q=\infty , \end{array}\right. \end{aligned}$$
(10.2)

is finite for some \(0<s+\epsilon \le 1\).

1.1 An Abstract Theory

We assume that \(u\in H^{m+s}(\Omega )\) with \(0<s<1\) and \(V_h\) is some nonconforming or conforming approximation space to the space \(H^m(\Omega )\).

Then the following conditions imply in some sense the saturation condition for the singular case:

  1. (H6)

    There exists a piecewise polynomial space \(V_{m+1,h}^c\subset H^{m+1}(\Omega )\) such that \( V_{m+1,h}^c\subset V_{m+1,h/2}^c\) when \({\mathcal {T}}_{h/2}\) is some nested conforming refinement of \({\mathcal {T}}_h\);

  2. (H7)

    There holds the following Berstein inequality

    $$\begin{aligned} |v|_{H^{m+s+\epsilon }(\Omega )}\lesssim h^{-(s+\epsilon )}|v|_{H^m(\Omega )}\text { for any }v\in V_{m+1,h}^c; \end{aligned}$$
    (10.3)
  3. (H8)

    There exists some quasi-interpolation operator \(\Pi ^c: V_h\rightarrow V_{m+1, h}^c\) such that

    $$\begin{aligned} \Vert D^m(u-\Pi ^c u_h)\Vert _{L^2(\Omega )}\lesssim h^{s+\epsilon } \end{aligned}$$
    (10.4)

    provided that \(\Vert D_h^m(u-u_h)\Vert _{L^2(\Omega )}\lesssim h^{s+\epsilon }\) with \(\epsilon >0\) and \(s+\epsilon \le 1\).

Theorem 10.1

Suppose the eigenfunction \(u\in H^{m+s}(\Omega )\) with \(0<s<1\). Under conditions (H6)–(H8), there exist meshes such that the following saturation condition holds

$$\begin{aligned} h^s\lesssim \Vert D_h^m(u-u_h)\Vert _{L^2(\Omega )}. \end{aligned}$$
(10.5)

Proof

We assume that the saturation condition \(h^{s}\lesssim \Vert D_h^m(u-u_h)\Vert _{L^2(\Omega )}\) does not hold for any mesh \({\mathcal {T}}_h\) with the meshsize \(h\). In other word, we have

$$\begin{aligned} \Vert D_h^m(u-u_h)\Vert _{L^2(\Omega )}\lesssim h^{s+\epsilon }, \end{aligned}$$
(10.6)

for some \(\epsilon >0\). In the following, we assume that \(s+\epsilon \le 1\). By the condition (H8), we have

$$\begin{aligned} \inf \limits _{v\in V_{m+1,h}^c}\Vert D^m(u-v)\Vert _{L^2(\Omega )}\lesssim \Vert D_h^m(u-\Pi ^c u_h)\Vert _{L^2(\Omega )}\lesssim h^{s+\epsilon }. \end{aligned}$$
(10.7)

Take \(X=H^m(\Omega )\) and \(Y=H^{m+s+\epsilon }(\Omega )\). The inequality (10.7) is the usual Jackson inequality and the inequality (10.3) is the Berstein inequality in the context of the approximation theory [15, 16]. We can follow the idea of [16, Theorem 5.1, Chapter 7] to estimate terms like \(K(u, 2^{-{\ell }(s+\epsilon )})\) for any positive integer \(\ell \). In fact, let \(\varphi _k\in V_{m+1, 2^{-k}}\) be the best approximation to \(u\) in the sense that \(\Vert D^m(u-\varphi _k)\Vert _{L^2(\Omega )}=\inf \limits _{v\in V_{m+1,2^{-k}}}\Vert D^m(u-v)\Vert _{L^2(\Omega )}\), \(k\ge 1\). Let \(\psi _k=\varphi _k-\varphi _{k-1}\), \(k=1, 2,\ldots ,\) where \(\psi _0=\varphi _0=0\). Then we have

$$\begin{aligned} \Vert D^m\psi _k\Vert _{L^2(\Omega )}\le \Vert D^m(u-\varphi _k)\Vert _{L^2(\Omega )}+\Vert D^m(u-\varphi _{k-1})\Vert _{L^2(\Omega )}\lesssim 2^{-k(s+\epsilon )}. \end{aligned}$$
(10.8)

Since \(\varphi _{\ell }=\sum \limits _{k=0}^{\ell }\psi _k\) and \(|\psi _0|_{H^{m+s+\epsilon }(\Omega )}=0\), it follows from (10.3), (10.7) and (10.8) that

$$\begin{aligned} K(u, 2^{-(s+\epsilon )\ell })&\le \Vert u-\varphi _{\ell }\Vert _{H^{m}(\Omega )}+2^{-(s+\epsilon )\ell }| \varphi _{\ell }|_{H^{m+s+\epsilon }}\nonumber \\&\lesssim 2^{-(s+\epsilon )\ell }+2^{-(s+\epsilon )\ell }\sum \limits _{k=1}^{\ell } 2^{k(s+\epsilon )}|\psi _k|_{H^m(\Omega )}\nonumber \\&\lesssim \ell 2^{-(s+\epsilon )\ell }. \end{aligned}$$
(10.9)
$$\begin{aligned} |u|_{(H^{m}(\Omega ), H^{m+s+\epsilon }(\Omega ))_{\theta , 2}}&= \bigg (\sum \limits _{k=0}^{\infty }\big [2^{k(s+\epsilon )\theta }K(u,2^{-k(s+\epsilon )})\big ]^2\bigg )^{1/2}\nonumber MYAMP]\lesssim&\bigg (\sum \limits _{k=0}^{\infty }\big [k2^{k(s+\epsilon )(\theta -1)}\big ]^2\bigg )^{1/2}. \end{aligned}$$
(10.10)

Let \(\theta =1-\epsilon _0\) with \(\epsilon _0>0\) such that \(\epsilon -(s+\epsilon )\epsilon _0>0\). This leads to

$$\begin{aligned} |u|_{(H^{m}(\Omega ), H^{m+s+\epsilon }(\Omega ))_{\theta , 2}} \lesssim \bigg (\sum \limits _{k=0}^{\infty }\big [k2^{-k(s+\epsilon )\epsilon _0}\big ] ^2\bigg )^{1/2}<\infty . \end{aligned}$$
(10.11)

This proves that \(u\in H^{m+(1-\epsilon _0)(s+\epsilon )}(\Omega )\) which is a proper subspace of \(H^{m+s}(\Omega )\) since \(\epsilon -(s+\epsilon )\epsilon _0>0\), which contradicts with the fact that we only have the regularity \(u\in H^{m+s}(\Omega )\). \(\square \)

1.2 Proofs for the Conditions (H6)–(H8)

It follows from Davydov [14] that there exist piecewise polynomial spaces \(V_{m+1,h}^c\) with nodal basis over \({\mathcal {T}}_h\) such that \(V_{m+1,h}^c\) are nested and conforming in the sense that \(V_{m+1,h}^c\subset V_{m+1,h/2}^c\subset H^m(\Omega )\) for any \(1\le n\) and \(m\le n\).

This result actually proves the conditions (H6) and (H7). The proof of (H8) needs the interpolation of \(V_h\) into the conforming finite element space. To this end, we introduce the projection average interpolation operator of Brenner [8], Shi and Wang [36].

Let \(V_{m+1,h}^c\) be a conforming finite element space defined by \((K,P_K^c,D^c_K)\), where \(D_K^c\) is the vector functional and the components of \(D^c_K\) are defined as follows: for any \(v\in C^{\kappa }(K)\)

$$\begin{aligned} d_{i,K}(v){:=}\left\{ \begin{array}{l@{\quad }l} D_{i,K}v(a_{i,K}) &{} 1\le i\le k_1,\\ \frac{1}{|F_{i,K}|}\int \limits _{F_{i,K}}D_{i,K}v df &{} k_1< i\le k_2,\\ \frac{1}{|K|}\int \limits _KD_{i,K}v dx &{} k_2< i\le L,\\ \end{array}\right. \end{aligned}$$
(*)

where \(a_{i,K}\) are points in \(K\), \(F_{i,K}\) are non zero-dimensional faces of \(K\). \(\kappa {:=}\max \limits _{1\le i\le L}k(i)\) where \(k(i)\) orders of derivatives used in degrees of freedom \(D_{i,K}{:=}\sum \limits _{|\alpha |=k(i)}\eta _{i,\alpha , K}\partial ^{\alpha },1\le i\le L\), \(\eta _{i,\alpha , K}\) are constants which depend on \(i, \alpha , \text { and } K\).

Let \(\omega (a)\) denote the union of elements that share point \(a\) and \(\omega (F)\) the union of elements having in common the face \(F\). Let \(N(a)\) and \(N(F)\) denote the number of elements in \(\omega (a)\) and \(\omega (F)\), respectively. For any \(v\in V_h\), define the projection average interpolation operator \(\Pi ^c: V_h\rightarrow V_{m+1,h}^c\) by

  1. (1)

    for \(1\le i\le k_1\), if \(a_{i,K}\in \partial \Omega \) and \(d_{i,K}(\phi )=0\) for any \(\phi \in C^{\kappa }(\overline{\Omega })\cap V\), then \(d_{i,K}(\Pi ^c v|_K){:=}0\); otherwise

    $$\begin{aligned} d_{i,K}(\Pi ^c v|_K){:=}\frac{1}{N(a_{i,K})}\sum _{K'\in \omega (a_{i,K})}D_{i,K}(v|_{K'})(a_{i,K}); \end{aligned}$$
  2. (2)

    for \(k_1< i\le k_2\), if \(F_{i,K}\subset \partial \Omega \) and \(d_{i,K}(\phi )=0\) for any \(\phi \in C^{\kappa }(\overline{\Omega })\cap V\), then \(d_{i,K}(\Pi ^c v|_K){:=}0\); otherwise

    $$\begin{aligned} d_{i,K}(\Pi ^c v|_K){:=}\frac{1}{N(F_{i,K})}\sum _{K'\in \omega (F_{i,K})}\frac{1}{|F_{i,K}|}\int \limits _{F_{i,K}}D_{i,K}(v|_{K'})(a_{i,K})df; \end{aligned}$$
  3. (3)

    for \(k_2< i\le L\)

    $$\begin{aligned} d_{i, K}(\Pi ^c v|_K){:=}\frac{1}{|K|}\int \limits _{K}D_{i,K}(v|_{K})dx. \end{aligned}$$

Lemma 10.2

For all nonconforming element spaces under consideration, there exists \(r\in \mathbb {N}, r\geqslant m\) such that \(V_h|_K\subset P_r(K)\subset P^c_K\). Then, for \(m<k\leqslant min\{r+1,2m\}\), \(0\leqslant l\leqslant m\), \(\alpha =(\alpha _1,\ldots ,\alpha _n)\), it holds that

$$\begin{aligned} \Vert D_h^m(v_h-\Pi ^c v_h)\Vert ^2_{L^2(\Omega )}&\lesssim \sum _{K\in \mathcal {T}_h}\left( \sum ^{k-1}_{j=m}h_K^{2(j-m)+1}\sum _{F\subset \partial K/\partial \Omega }\sum _{|\alpha |=j}\Vert [\partial ^{\alpha }v_h]\Vert ^2_{0,F}\right. \\&\left. +\,h_K\sum _{F\subset \partial K\cap \partial \Omega }\sum _{|\alpha |=m,\alpha _1<m}\Vert \frac{\partial ^{|\alpha |}v_h}{\partial \nu _F^{\alpha _1}\partial \tau _{F,2}^{\alpha _2}\cdots \partial \tau _{F,n}^{\alpha _n}} \Vert ^2_{0,F}\right) , \end{aligned}$$

where \(\tau _{F,2},\ldots ,\tau _{F,n}\) are \(n-1\) orthonormal tangent vectors of \(F\).

Proof

Since \(V_h|_K\subset P_r(K)\subset P^c_K\), a slight modification of the argument in [36, Lemma 5.6.4] can prove the desired result; see also Brenner [8] for the proof of the nonconforming linear element with \(m=1\). \(\square \)

The remaining proof is based on bubble function techniques, see Carstensen and Hu [11] for a posteriori error analysis of second order problems, see Gudi [19], Hu and Shi [21] for a posteriori error analysis of fourth order problems. Let \(v_h=u_h\) in the above lemma. Such an analysis leads to

$$\begin{aligned} \Vert D_h^m(\Pi ^c u_h-u_h)\Vert _{L^2(\Omega )}\lesssim \Vert D_h^m(u-u_h)\Vert _{L^2(\Omega )}\lesssim h^{s+\epsilon }. \end{aligned}$$
(10.12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Huang, Y. & Lin, Q. Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods. J Sci Comput 61, 196–221 (2014). https://doi.org/10.1007/s10915-014-9821-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9821-5

Keywords

Mathematics Subject Classification

Navigation