Journal of Scientific Computing

, Volume 60, Issue 3, pp 483–504 | Cite as

Multiplicative Denoising Based on Linearized Alternating Direction Method Using Discrepancy Function Constraint

  • Dai-Qiang Chen
  • Yan Zhou


The multiplicative noise (speckle) in coherent imaging systems such as synthetic aperture radar makes it difficult to interpret observed images. Recently, the total variation (TV) models have received much interest in removing the speckle due to the strong edge preserving ability and low computational cost of the TV regularizer. However, the classical methods have difficulties in two aspects: one is how to efficiently compute the solution of the models with special data-fidelity terms, the other is how to choose the regularization parameter since the variational models are rather sensitive to the parameter. In this paper, we propose a new linearized alternating direction method, which is able to handle the data-fidelity term efficiently, and meanwhile estimate the optimal value of the regularization parameter exactly based on a discrepancy function constraint. We further establish the global convergence of the proposed algorithm. Numerical experiments demonstrate that our methods overall outperform the current state-of-the-art methods for multiplicative noise removal.


Multiplicative noise Linearized alternating minimization Regularization parameter Convex discrepancy function Total variation 



We are appreciative of the anonymous reviewers’constructive comments, with which great improvements have been made in this manuscript. The work was supported in part by the National Natural Science Foundation of China under Grant 61271014.


  1. 1.
    Aubert, G., Aujol, J.: A variational approach to remove multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Rudin, L.I., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms, Chapter 6. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–120. Springer, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, D., Cheng, L., Su, F.: A new TV-Stokes model with augmented Lagrangian method for image denoising and deconvolution. J. Sci. Comput. 51(3), 505–526 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Huang, Y., Ng, M., Wen, Y.: A new toal variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bioucas-Dias, J.M., Figueiredo, M.A.T.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(7), 1720–1730 (2010)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ye, X., Chen, Y., Huang, F.: Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Trans. Med. Imaging 30(5), 1055–1063 (2011)CrossRefGoogle Scholar
  9. 9.
    Yun, S., Woo, H.: A new multiplicative denoising variational model based on m-th root transformation. IEEE Trans. Image Processing 21(5), 2523–2533 (2012)MathSciNetGoogle Scholar
  10. 10.
    Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35(2), 336–358 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hansen, P., O’Leary, D.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)CrossRefMATHGoogle Scholar
  15. 15.
    Ramani, S., Blu, T., Unser, M.: Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wen, Y.W., Chan, R.H.: Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Chen, D., Cheng, L.: Spatially adapted total variation model to remove multiplicative noise. IEEE Trans. Image Process. 21(4), 1650–1662 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  21. 21.
    Chen, D.Q., Zhang, H., Cheng, L.Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imaging Vis. 43(3), 167–179 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Grasmair, M.: Locally adaptive total variation regularization, In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 331–342. Springer, Berlin (2009). ISBN 978-3-642-02255-5Google Scholar
  24. 24.
    Dong, Y.Q., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Chen, D., Cheng, L.: Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring. Inverse Probl. 28(1), 015004 (2012)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)MathSciNetGoogle Scholar
  27. 27.
    Cai, J.-F., Osher, S., Shen, Z.: Split bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Carlavan, M., Blanc-Féraud, L.: Sparse Poisson noisy image deblurring. IEEE Trans. Image Process. 21(4), 1834–1846 (2012)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Teuber, T., Steidl, G., Chan, R.H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Inverse Probl. 29(3), 035007 (2013)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsSchool of Biomedical Engineering, Third Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.School of AutomationChongqing UniversityChangsha People’s Republic of China

Personalised recommendations