Skip to main content
Log in

Multiplicative Denoising Based on Linearized Alternating Direction Method Using Discrepancy Function Constraint

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The multiplicative noise (speckle) in coherent imaging systems such as synthetic aperture radar makes it difficult to interpret observed images. Recently, the total variation (TV) models have received much interest in removing the speckle due to the strong edge preserving ability and low computational cost of the TV regularizer. However, the classical methods have difficulties in two aspects: one is how to efficiently compute the solution of the models with special data-fidelity terms, the other is how to choose the regularization parameter since the variational models are rather sensitive to the parameter. In this paper, we propose a new linearized alternating direction method, which is able to handle the data-fidelity term efficiently, and meanwhile estimate the optimal value of the regularization parameter exactly based on a discrepancy function constraint. We further establish the global convergence of the proposed algorithm. Numerical experiments demonstrate that our methods overall outperform the current state-of-the-art methods for multiplicative noise removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aubert, G., Aujol, J.: A variational approach to remove multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rudin, L.I., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms, Chapter 6. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–120. Springer, New York (2003)

    Chapter  Google Scholar 

  3. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, D., Cheng, L., Su, F.: A new TV-Stokes model with augmented Lagrangian method for image denoising and deconvolution. J. Sci. Comput. 51(3), 505–526 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Huang, Y., Ng, M., Wen, Y.: A new toal variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bioucas-Dias, J.M., Figueiredo, M.A.T.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(7), 1720–1730 (2010)

    Article  MathSciNet  Google Scholar 

  7. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ye, X., Chen, Y., Huang, F.: Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Trans. Med. Imaging 30(5), 1055–1063 (2011)

    Article  Google Scholar 

  9. Yun, S., Woo, H.: A new multiplicative denoising variational model based on m-th root transformation. IEEE Trans. Image Processing 21(5), 2523–2533 (2012)

    MathSciNet  Google Scholar 

  10. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35(2), 336–358 (2013)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hansen, P., O’Leary, D.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MATH  Google Scholar 

  15. Ramani, S., Blu, T., Unser, M.: Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008)

    Article  MathSciNet  Google Scholar 

  16. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)

    Article  MathSciNet  Google Scholar 

  17. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)

    Article  MathSciNet  Google Scholar 

  18. Wen, Y.W., Chan, R.H.: Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  19. Chen, D., Cheng, L.: Spatially adapted total variation model to remove multiplicative noise. IEEE Trans. Image Process. 21(4), 1650–1662 (2012)

    Article  MathSciNet  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  21. Chen, D.Q., Zhang, H., Cheng, L.Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imaging Vis. 43(3), 167–179 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Grasmair, M.: Locally adaptive total variation regularization, In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 331–342. Springer, Berlin (2009). ISBN 978-3-642-02255-5

  24. Dong, Y.Q., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)

    Article  MATH  Google Scholar 

  25. Chen, D., Cheng, L.: Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring. Inverse Probl. 28(1), 015004 (2012)

    Article  MathSciNet  Google Scholar 

  26. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  27. Cai, J.-F., Osher, S., Shen, Z.: Split bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  28. Carlavan, M., Blanc-Féraud, L.: Sparse Poisson noisy image deblurring. IEEE Trans. Image Process. 21(4), 1834–1846 (2012)

    Article  MathSciNet  Google Scholar 

  29. Teuber, T., Steidl, G., Chan, R.H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Inverse Probl. 29(3), 035007 (2013)

    Article  MathSciNet  Google Scholar 

  30. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are appreciative of the anonymous reviewers’constructive comments, with which great improvements have been made in this manuscript. The work was supported in part by the National Natural Science Foundation of China under Grant 61271014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, DQ., Zhou, Y. Multiplicative Denoising Based on Linearized Alternating Direction Method Using Discrepancy Function Constraint. J Sci Comput 60, 483–504 (2014). https://doi.org/10.1007/s10915-013-9803-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9803-z

Keywords

Navigation