Advertisement

Journal of Scientific Computing

, Volume 60, Issue 1, pp 101–140 | Cite as

High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws

  • David C. Seal
  • Yaman Güçlü
  • Andrew J. Christlieb
Article

Abstract

Multiderivative time integrators have a long history of development for ordinary differential equations, and yet to date, only a small subset of these methods have been explored as a tool for solving partial differential equations (PDEs). This large class of time integrators include all popular (multistage) Runge–Kutta as well as single-step (multiderivative) Taylor methods. (The latter are commonly referred to as Lax–Wendroff methods when applied to PDEs). In this work, we offer explicit multistage multiderivative time integrators for hyperbolic conservation laws. Like Lax–Wendroff methods, multiderivative integrators permit the evaluation of higher derivatives of the unknown in order to decrease the memory footprint and communication overhead. Like traditional Runge–Kutta methods, multiderivative integrators admit the addition of extra stages, which introduce extra degrees of freedom that can be used to increase the order of accuracy or modify the region of absolute stability. We describe a general framework for how these methods can be applied to two separate spatial discretizations: the discontinuous Galerkin (DG) method and the finite difference essentially non-oscillatory (FD-WENO) method. The two proposed implementations are substantially different: for DG we leverage techniques that are closely related to generalized Riemann solvers; for FD-WENO we construct higher spatial derivatives with central differences. Among multiderivative time integrators, we argue that multistage two-derivative methods have the greatest potential for multidimensional applications, because they only require the flux function and its Jacobian, which is readily available. Numerical results indicate that multiderivative methods are indeed competitive with popular strong stability preserving time integrators.

Keywords

Hyperbolic conservation laws Multiderivative Runge–Kutta Discontinuous Galerkin Weighted essentially non-oscillatory Lax–Wendroff Taylor 

Notes

Acknowledgments

This work has been supported in part by Air Force Office of Scientific Research grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, and by National Science Foundation Grant number DMS-1115709. We would like to thank Matthew F. Causley for discussing multiderivative methods with us, and Qi Tang for useful discussions on the WENO method.

References

  1. 1.
    Bettis, D.G., Horn, M.K.: An optimal \((m+3)[m+4]\) Runge Kutta algorithm. In: Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I, vol. 14, pp. 133–140 (1976)Google Scholar
  2. 2.
    Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107–116 (1942)Google Scholar
  4. 4.
    Butcher, J.C.: General linear methods: a survey. Appl. Numer. Math. 1(4), 273–284 (1985)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Butcher, J.C.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996). Selected topics in numerical methods (Miskolc, 1994)Google Scholar
  6. 6.
    Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algorithms 53(2–3), 171–194 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193(2), 563–594 (2004)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fehlberg, E.: Neue genauere Runge-Kutta-Formeln für Differentialgleichungen \(n\)-ter Ordnung. Z. Angew. Math. Mech. 40, 449–455 (1960)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Fehlberg, E.: New high-order Runge-Kutta formulas with step size control for systems of first- and second-order differential equations. Z. Angew. Math. Mech. 44, T17–T29 (1964)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Friedman, A.: A new proof and generalizations of the Cauchy-Kowalewski theorem. Trans. Am. Math. Soc. 98, 1–20 (1961)CrossRefMATHGoogle Scholar
  16. 16.
    Fusaro, B.A.: The Cauchy-Kowalewski theorem and a singular initial value problem. SIAM Rev. 10, 417–421 (1968)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gekeler, E., Widmann, R.: On the order conditions of Runge-Kutta methods with higher derivatives. Numer. Math. 50(2), 183–203 (1986)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Goeken, D., Johnson, O.: Fifth-order Runge-Kutta with higher order derivative approximations. In: Proceedings of the 15th Annual Conference of Applied Mathematics (Edmond, OK, 1999), Electron. J. Differ. Equ. Conf., vol. 2, pp. 1–9 (electronic). Southwest Texas State University, San Marcos, TX (1999)Google Scholar
  19. 19.
    Goeken, D., Johnson, O.: Runge-Kutta with higher order derivative approximations. Appl. Numer. Math. 34(2–3), 207–218 (2000). Auckland numerical ordinary differential equations (Auckland, 1998)Google Scholar
  20. 20.
    Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25(1–2), 105–128 (2005)MATHMathSciNetGoogle Scholar
  21. 21.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. Am. 67(221), 73–85 (1998)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (electronic) (2001)Google Scholar
  23. 23.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. Springer, Berlin (1991)CrossRefGoogle Scholar
  24. 24.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 1, 3rd edn. Springer, Berlin (2009)Google Scholar
  25. 25.
    Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods of ordinary differential equations. Computing (Arch. Elektron. Rechnen) 11(3), 287–303 (1973)MATHMathSciNetGoogle Scholar
  26. 26.
    Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)MATHMathSciNetGoogle Scholar
  27. 27.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)CrossRefMATHGoogle Scholar
  30. 30.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Kastlunger, K., Wanner, G.: On Turán type implicit Runge-Kutta methods. Computing (Arch. Elektron. Rechnen) 9, 317–325 (1972)Google Scholar
  32. 32.
    Kastlunger, K.H., Wanner, G.: Runge Kutta processes with multiple nodes. Computing (Arch. Elektron. Rechnen) 9, 9–24 (1972)MATHMathSciNetGoogle Scholar
  33. 33.
    Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ketcheson, D.I.: Runge-Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Lax, P., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  38. 38.
    Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Lu, C., Qiu, J.: Simulations of shallow water equations with finite difference Lax-Wendroff weighted essentially non-oscillatory schemes. J. Sci. Comput. 47(3), 281–302 (2011)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Mitsui, T.: Runge-Kutta type integration formulas including the evaluation of the second derivative. I. Publ. Res. Inst. Math. Sci. 18(1), 325–364 (1982)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231(19), 6472–6494 (2012)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Nguyen-Ba, T., Božić, V., Kengne, E., Vaillancourt, R.: Nine-stage multi-derivative Runge-Kutta method of order 12. Publ. Inst. Math. (Beograd) (N.S.) 86(100), 75–96 (2009)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Obreschkoff, N.: Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1940(4), 20 (1940)Google Scholar
  45. 45.
    Ono, H., Yoshida, T.: Two-stage explicit Runge-Kutta type methods using derivatives. Jpn. J. Ind. Appl. Math. 21(3), 361–374 (2004)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Qiu, J.: A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes. J. Sci. Comput. 30(3), 345–367 (2007)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Qiu, J.: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Comput. Appl. Math. 200(2), 591–605 (2007)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Qiu, J., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  51. 51.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Rossmanith, J.: DoGPack software (2013). Available from http://www.dogpack-code.org
  53. 53.
    Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)MathSciNetGoogle Scholar
  55. 55.
    Seal, D.C.: Discontinuous Galerkin methods for Vlasov models of plasma. Ph.D. thesis, Madison, WI, University of Wisconsin, Madison, WI (2012)Google Scholar
  56. 56.
    Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima Math. J. 1, 349–372 (1971)MATHMathSciNetGoogle Scholar
  57. 57.
    Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)MATHMathSciNetGoogle Scholar
  58. 58.
    Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)Google Scholar
  59. 59.
    Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn. 17(2), 107–118 (2003)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Stancu, D.D., Stroud, A.H.: Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math. Comput. 17, 384–394 (1963)CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Taube, A., Dumbser, M., Balsara, D.S., Munz, C.D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 609–618 (2002)Google Scholar
  66. 66.
    Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715–736 (2005)Google Scholar
  67. 67.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999)Google Scholar
  68. 68.
    Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)Google Scholar
  69. 69.
    Toro, E.F., Titarev, V.A.: ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J. Comput. Phys. 202(1), 196–215 (2005)Google Scholar
  70. 70.
    Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005)Google Scholar
  71. 71.
    Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 30–37 (1950)Google Scholar
  72. 72.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    Yoshida, T., Ono, H.: Two stage explicit Runge-Kutta type method using second and third derivatives. IPSJ J. 44(1), 82–87 (2003)MathSciNetGoogle Scholar
  74. 74.
    Zurmühl, R.: Runge-Kutta-Verfahren unter Verwendung höherer Ableitungen. Z. Angew. Math. Mech. 32, 153–154 (1952)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David C. Seal
    • 1
  • Yaman Güçlü
    • 1
  • Andrew J. Christlieb
    • 2
    • 3
  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA
  3. 3.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations