Advertisement

Journal of Scientific Computing

, Volume 58, Issue 2, pp 308–330 | Cite as

A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes

  • Zhimin Zhang
  • Qingsong Zou
Article

Abstract

In this paper, we analyze vertex-centered finite volume method (FVM) of any order for elliptic equations on rectangular meshes. The novelty is a unified proof of the inf-sup condition, based on which, we show that the FVM approximation converges to the exact solution with the optimal rate in the energy norm. Furthermore, we discuss superconvergence property of the FVM solution. With the help of this superconvergence result, we find that the FVM solution also converges to the exact solution with the optimal rate in the \(L^2\)-norm. Finally, we validate our theory with numerical experiments.

Keywords

High order Finite volume method Inf-sup condition Superconvergence 

Mathematics Subject Classification

Primary 65N30 Secondary 45N08 

Notes

Acknowledgments

The authors would like to thank a Ph.D. student, Waixiang Cao for her assistance in the numerical experiments.

References

  1. 1.
    Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on non-orthogonal quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127, 2–14 (1996)CrossRefMATHGoogle Scholar
  3. 3.
    Bank, R.E., Rose, D.J.: Some error estimates for the box scheme. SIAM J. Numer. Anal. 24, 777–787 (1987)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Barth, T., Ohlberger, M., Finite volume methods: foundation and analysis. In: Encyclopedia of Computational Mechanics, vol. 1, Chapter 15. Wiley, London (2004)Google Scholar
  5. 5.
    Boyer, F., Hubert, F.: Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46, 3032–3070 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43, 1872–1896 (2005)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cai, Z., Douglas, J., Park, M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cao, W., Zhang, Z., Zou, Q.: Superconvergence finite volume schemes for 1D general elliptic equations. J. Sci. Comput. (2013). doi: 10.1007/s10915-013-9691-2
  10. 10.
    Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37, 191–253 (2012)Google Scholar
  12. 12.
    Chou, S.H., Kwak, D.Y., Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48, 824–839 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Boston (1984)MATHGoogle Scholar
  15. 15.
    Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal. 39, 1203–1249 (2005)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Douglas, J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22, 99–109 (1974)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Emonot, Ph.: Methods de volums elements finis: applications aux equations de Navier–Stokes et resultats de convergence. Dissertation Lyon (1992)Google Scholar
  19. 19.
    Ewing, R., Lin, T., Lin, Y.: On the accuracy of the finite volume element based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Eymard, R., Gallouet, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes, SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30, 1009–1043 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. M2AN Math. Model. Numer. Anal. 46, 265–290 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis VII, pp. 713–1020. North-Holland, Amsterdam (2000)Google Scholar
  23. 23.
    Hackbusch, W.: On first and second order box methods. Computing 41, 277–296 (1989)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Hermeline, F.: Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192(16–18), 1939–1959 (2003)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hyman, J.M., Knapp, R., Scovel, J.C.: High order finite volume approximations of differential operators on nonuniform grids. Physica D 60, 112–138 (1992)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Lazarov, R., Michev, I., Vassilevski, P.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33, 31–55 (1996)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  28. 28.
    Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial differential Equations. Marcel Dikker, New York (2000)Google Scholar
  29. 29.
    Liebau, F.: The finite volume element method with quadratic basis function. Computing 57, 281–299 (1996)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Mattiussi, C.: An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology. J. Comput. Phys. 133, 289–309 (1997)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Nicolaides, R.A., Porsching, T.A., Hall, C.A.: Covolume methods in computational fluid dynamics. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review, pp. 279–299. Wiley, New York (1995)Google Scholar
  32. 32.
    Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys. 181, 729–752 (2002)CrossRefMATHGoogle Scholar
  33. 33.
    Patanker, S.V.: Numerical Heat Transfer and Fluid Flow, Ser. Comput. Methods Mech. Thermal Sci. McGraw Hill, New York (1980)Google Scholar
  34. 34.
    Plexousakis, M., Zouraris, G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Shu, C.W.: High order finite difference and finite volume WENO schemes and discontinous Galerkin methods for CFD. J. Comput. Fluid Dyn. 17, 107–118 (2003)CrossRefMATHGoogle Scholar
  36. 36.
    Tian, M., Chen, Z.: Quadratical element generalized differential methods for elliptic equations. Numer. Math. J. Chin. Univ. 13, 99–113 (1991)MATHMathSciNetGoogle Scholar
  37. 37.
    Wang, T., Gu, Y.: Superconvergence biquadratic finite volume element method for two dimensional Poisson’s equation. Comput. Appl. Math. 234, 447–460 (2010)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Xu, J., Zikatanov, L.: Some observations on Babuska–Brezzi conditions. Numer. Math. 94, 195–202 (2003)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Xu, J., Zou, Q.: Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Zhang, Z., Zou, Q.: Finite volume methods of any order on quadrilateral meshes for general elliptic equations (2013) (submitted)Google Scholar
  41. 41.
    Zhang, Z.: Finite element superconvergent approximation for one-dimensional singularly perturbed problems. Numer. Methods Partial Differ. Equ. 18, 374–395 (2002)CrossRefMATHGoogle Scholar
  42. 42.
    Zhang, Z.: Superconvergence of spectral collocation and p-version methods in one dimensional problems. Math. Comput. 74, 1621–1636 (2005)CrossRefMATHGoogle Scholar
  43. 43.
    Zhu, Q., Lin, Q.: Superconvergence Theory of the Finite Element Method (in Chinese). Hunan Science Press, Hunan (1989)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingPeople’s Republic of China
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA
  3. 3.College of Mathematics and Scientific ComputingSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  4. 4.Guangdong Province Key Laboratory of Computational ScienceSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations