Advertisement

Journal of Scientific Computing

, Volume 58, Issue 1, pp 249–274 | Cite as

Spectral Method for Navier–Stokes Equations with Slip Boundary Conditions

Original Research

Abstract

In this paper, we propose a spectral method for the \(n\)-dimensional Navier–Stokes equations with slip boundary conditions by using divergence-free base functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. Therefore, we need neither the artificial compressibility method nor the projection method. Moreover, we only have to evaluate the unknown coefficients of expansions of \(n-1\) components of the velocity. These facts simplify actual computation and numerical analysis essentially, and also save computational time. As the mathematical foundation of this new approach, we establish some approximation results, with which we prove the spectral accuracy in space of the proposed algorithm. Numerical results demonstrate its high efficiency and coincide the analysis very well. The main idea, the approximation results and the techniques developed in this paper are also applicable to numerical simulations of other problems with divergence-free solutions, such as certain partial differential equations describing electro-magnetic fields.

Keywords

Spectral method Navier–Stokes equations Slip boundary conditions 

Mathematics Subject Classification (2000)

65M70 41A10 76D05 

References

  1. 1.
    Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L (ed.) Handbook of Numerical Analysis, vol. 5, Techniques of Scientific Computing, pp. 209–486. Elsevier, Amsterdam (1997)Google Scholar
  2. 2.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)Google Scholar
  3. 3.
    Chorin, A.J.: Numerical solution of the Navier–Stokes equations. J. Comput. Phys. 2, 745–762 (1968)MathSciNetGoogle Scholar
  4. 4.
    Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Degond, P., Raviat, P.A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Feistauer, M., Schwab, C.: Coupling of an interior Navier–Stokes problem with an exterior Oseen problem. J. Math. Fluid Mech. 3, 1–17 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gatica, G.N., Hsiao, G.C.: The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Numer. Math. 61, 171–214 (1992)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes equations, Lecture Notes in Mathematics, vol. 794. Springer, Berlin (1979)CrossRefGoogle Scholar
  9. 9.
    Gresho, P.M.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 7, 1111–1145 (1987)CrossRefMATHGoogle Scholar
  10. 10.
    Guermond, J.L., Quartapelle, L.: Uncoupled \(\Omega -\psi \) formulation for plate flows in multiply connected domains. Math. Mod. Meth. Appl. Sci. 7, 731–767 (1997)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Guo, B.-Y.: A class of difference schemes of two-dimensional viscous fluid flow. Research Report of SUTU 1965, also see Acta Math. Sinica 17, 242–258 (1974)Google Scholar
  12. 12.
    Guo, B.-Y.: Spectral method for Navier–Stokes equations. Sci. Sinica 28A, 1139–1153 (1985)Google Scholar
  13. 13.
    Guo, B.-Y.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)Google Scholar
  14. 14.
    Guo, B.-Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)Google Scholar
  15. 15.
    Guo, B.-Y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243, 373–408 (2000)Google Scholar
  16. 16.
    Guo, B.-Y.: Navier–Stokes equations with slip boundary conditions. Math. Meth. Appl. Sci. 31, 607–626 (2008)Google Scholar
  17. 17.
    Guo, B.-Y., He, L.-P.: Fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35, 146–176 (1998)Google Scholar
  18. 18.
    Guo, B.-Y., Jiao, Y.-J.: Spectral method for Navier–Stokes equations with Non-slip boundary conditions by using divergence-free base functions (unpublished)Google Scholar
  19. 19.
    Guo, B.-Y., Ma, H.-P.: Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier–Stokes equations. SIAM J. Numer. Anal. 30, 1066–1083 (1993)Google Scholar
  20. 20.
    Guo, B.-Y., Shen, J., Wang, L.-L: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)Google Scholar
  21. 21.
    Guo, B.-Y., Shen, J., Wang, L.-L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)Google Scholar
  22. 22.
    Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)Google Scholar
  23. 23.
    Guo, B.-Y., Xu, C.-L.: Mixed Laguerre–Lagendre pseudospectral method for incompressible fluid flow in an infinite strip. Math. Comput. 73, 95–125 (2003)Google Scholar
  24. 24.
    Hald, O.H.: Convergence of Fourier methods for Navier–Stokes equations. J. Comput. Phys. 40, 305–317 (1981)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Jiao, Y.-J., Guo, B.-Y.: Spectral method for vorticity-stream function form of Navier–Stokes equations with slip boundary conditions. Math. Meth. Appl. Sci. 35, 257–267 (2012)Google Scholar
  26. 26.
    John, V., Liakos, A.: Time-dependent flow across a step: the slip with friction boundary condition. Int. J. Numer. Meth. Fluids 50, 713–731 (2006)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kuo, P.-Y.: Numerical methods for incompressible viscous flow. Sci. Sinica 20, 287–304 (1977)Google Scholar
  28. 28.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)MATHGoogle Scholar
  29. 29.
    Lions, J.L.: Quèlques Méthodes de Résolution des Problèms aux Limités Non Linéaires. Dunod, Paris (1969)Google Scholar
  30. 30.
    Ma, T., Wang, S.H.: The geometry of the stream lines of steady states of the Navier–Stokes equations. In: Chen, G.Q., Dibenedetto, E. (eds.) Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 238, pp. 193–202. Am. Math. Soci., Providence (1999)Google Scholar
  31. 31.
    Ma, T., Wang, S.H.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Mathematical Surveys and Monographs, vol. 119. Am. Math. Soci, Providence (2005)Google Scholar
  32. 32.
    Maday, Y., Quarteroni, A.: Spectral and pseudospectral approximation of the Navier–Stokes equations. Cont. Math. 19, 761–780 (1982)MATHMathSciNetGoogle Scholar
  33. 33.
    Mucha, P.B.: On Navier–Stokes equations with slip boundary conditions in an infinite pipe. Acta Appl. Math. 76, 1–15 (2003)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Orszag, S., Israeli, M., Deville, M.O.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75–111 (1986)Google Scholar
  35. 35.
    Téman, R.: Sur l’approximation de la solution des equations de Navier–Stokes par la méthode des fractionnarires II. Arch. Rati. Mech. Anal. 33, 377–385 (1969)Google Scholar
  36. 36.
    Téman, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Scientific Computing Key Laboratory of Shanghai UniversitiesShanghai Normal UniversityShanghaiChina
  3. 3.E-Institute for Computational Science of Shanghai UniversitiesShanghai Normal UniversityShanghaiChina

Personalised recommendations