Skip to main content
Log in

An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A wide class of well-posed operator equations can be solved in optimal computational complexity by adaptive wavelet methods. A quantitative bottleneck is the approximate evaluation of the arising residuals that steer the adaptive refinements. In this paper, we consider multi-tree approximations from tensor product wavelet bases for solving linear PDE’s. In this setting, we develop a new efficient approximate residual evaluation. Other than the commonly applied method, that uses the so-called APPLY routine, our approximate residual depends affinely on the current approximation of the solution. Our findings are illustrated by numerical results that show a considerable speed-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achatz, S.: Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten. PhD thesis, Technische Universität München (2003)

  2. Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichungen auf dünnen Gittern. PhD thesis, Technische Universität München (1994)

  3. Balder, R., Zenger, Ch.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bungartz, H.J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson–Gleichung. PhD thesis, Technische Universität München (1992)

  5. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chegini, N.G., Dahlke, S., Friedrich, U., Stevenson, R.P.: Piecewise tensor product wavelet bases by extensions and approximation rates. Technical report, KdV Institute for Mathematics, University of Amsterdam (2011). To appear in Math. Comp

  7. Chegini, N.G., Stevenson, R.P.: The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA J. Numer. Anal. 32(1), 75–104 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chegini, N.G., Stevenson, R.P.: Adaptive wavelets schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations—convergence rates. Math. Comp. 70, 27–75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dauge, M., Stevenson, R.P.: Sparse tensor product wavelet approximation of singular functions. SIAM J. Math. Anal. 42(5), 2203–2228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 5. Springer, Berlin (1992). Evolution problems I

  12. Dijkema, T.-J., Schwab, C., Stevenson, R.P.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dijkema, T.-J., Stevenson, R.P.: A sparse Laplacian in tensor product wavelet coordinates. Numer. Math. 115(3), 433–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal. 27(6), 1791–1815 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feuersänger, C.: Dünngitterverfahren für hochdimensionale elliptische partielle Differentialgleichungen. Institut für Numerische Simulation, Universität Bonn, Master’s Thesis (2005)

  17. Gantumur, T., Harbrecht, H., Stevenson, R.P.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 76, 615–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2), 151–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)

    MathSciNet  Google Scholar 

  20. Kestler, S., Stevenson, R.P.: Fast Evaluation of System Matrices w.r.t. Multi-tree Collections of Tensor Product Refinable Basis Functions. Technical report (2012) (submitted)

  21. Kestler, S., Urban, K.: Adaptive wavelet methods on unbounded domains. J. Sci. Comput. 53(2), 342–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Niedermeier, A., Zimmer, S.: Implementational aspects of prewavelet sparse grid methods. In: Eleventh International Conference on Domain Decomposition Methods (London, 1998), pp. 314–321 (1999)

  23. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. PhD thesis, Technische Universität München (2010)

  24. Rupp, A.: PhD thesis, University of Ulm (2013) (to appear)

  25. Schneider, K., Farge, M., Koster, F., Griebel, M.: Adaptive wavelet methods for the Navier–Stokes equations. In Numerical flow simulation, II, volume 75 of Notes Numer. Fluid Mech., pp. 303–318. Springer, Berlin (2001)

  26. Stevenson, R.P.: Adaptive methods for solving operator equations: an overview. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pp. 543–598. Springer, Berlin (2009)

  27. Stevenson, R.P.: Adaptive Wavelet Methods for Linear and Non-linear Least Squares Problems. Technical report, KdVI, UvA Amsterdam, November (2011) (submitted)

  28. Stippler, A.: LAWA—Library for Adaptive Wavelet Applications (2009). http://lawa.sourceforge.net. Accessed 16 Feb 2013

  29. Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47(3), 328–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Mechanics, pp. 241–251. Vieweg (1991)

Download references

Acknowledgments

The authors are grateful to Andreas Rupp from the Institute for Numerical Mathematics at the University of Ulm for providing implementations of \(L_2\)-orthonormal multi-wavelets on the interval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kestler.

Additional information

S.K. was supported by the Deutsche Forschungsgemeinschaft within the Research Training Group (Graduiertenkolleg) GrK 1100 Modellierung, Analyse und Simulation in der Wirtschaftsmathematik at the University of Ulm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kestler, S., Stevenson, R. An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method. J Sci Comput 57, 439–463 (2013). https://doi.org/10.1007/s10915-013-9712-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9712-1

Keywords

Mathematics Subject Classification (2000)

Navigation