Journal of Scientific Computing

, Volume 57, Issue 3, pp 439–463 | Cite as

An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method



A wide class of well-posed operator equations can be solved in optimal computational complexity by adaptive wavelet methods. A quantitative bottleneck is the approximate evaluation of the arising residuals that steer the adaptive refinements. In this paper, we consider multi-tree approximations from tensor product wavelet bases for solving linear PDE’s. In this setting, we develop a new efficient approximate residual evaluation. Other than the commonly applied method, that uses the so-called APPLY routine, our approximate residual depends affinely on the current approximation of the solution. Our findings are illustrated by numerical results that show a considerable speed-up.


Adaptive wavelet method Multi-tree tensor product approximation  Optimal computational complexity 

Mathematics Subject Classification (2000)

41A30 41A63 65N30 65Y20 



The authors are grateful to Andreas Rupp from the Institute for Numerical Mathematics at the University of Ulm for providing implementations of \(L_2\)-orthonormal multi-wavelets on the interval.


  1. 1.
    Achatz, S.: Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten. PhD thesis, Technische Universität München (2003)Google Scholar
  2. 2.
    Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichungen auf dünnen Gittern. PhD thesis, Technische Universität München (1994)Google Scholar
  3. 3.
    Balder, R., Zenger, Ch.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bungartz, H.J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson–Gleichung. PhD thesis, Technische Universität München (1992)Google Scholar
  5. 5.
    Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chegini, N.G., Dahlke, S., Friedrich, U., Stevenson, R.P.: Piecewise tensor product wavelet bases by extensions and approximation rates. Technical report, KdV Institute for Mathematics, University of Amsterdam (2011). To appear in Math. CompGoogle Scholar
  7. 7.
    Chegini, N.G., Stevenson, R.P.: The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA J. Numer. Anal. 32(1), 75–104 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chegini, N.G., Stevenson, R.P.: Adaptive wavelets schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations—convergence rates. Math. Comp. 70, 27–75 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dauge, M., Stevenson, R.P.: Sparse tensor product wavelet approximation of singular functions. SIAM J. Math. Anal. 42(5), 2203–2228 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 5. Springer, Berlin (1992). Evolution problems IGoogle Scholar
  12. 12.
    Dijkema, T.-J., Schwab, C., Stevenson, R.P.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dijkema, T.-J., Stevenson, R.P.: A sparse Laplacian in tensor product wavelet coordinates. Numer. Math. 115(3), 433–449 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal. 27(6), 1791–1815 (1996)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Feuersänger, C.: Dünngitterverfahren für hochdimensionale elliptische partielle Differentialgleichungen. Institut für Numerische Simulation, Universität Bonn, Master’s Thesis (2005)Google Scholar
  17. 17.
    Gantumur, T., Harbrecht, H., Stevenson, R.P.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 76, 615–629 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2), 151–179 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)MathSciNetGoogle Scholar
  20. 20.
    Kestler, S., Stevenson, R.P.: Fast Evaluation of System Matrices w.r.t. Multi-tree Collections of Tensor Product Refinable Basis Functions. Technical report (2012) (submitted)Google Scholar
  21. 21.
    Kestler, S., Urban, K.: Adaptive wavelet methods on unbounded domains. J. Sci. Comput. 53(2), 342–376 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Niedermeier, A., Zimmer, S.: Implementational aspects of prewavelet sparse grid methods. In: Eleventh International Conference on Domain Decomposition Methods (London, 1998), pp. 314–321 (1999)Google Scholar
  23. 23.
    Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. PhD thesis, Technische Universität München (2010)Google Scholar
  24. 24.
    Rupp, A.: PhD thesis, University of Ulm (2013) (to appear)Google Scholar
  25. 25.
    Schneider, K., Farge, M., Koster, F., Griebel, M.: Adaptive wavelet methods for the Navier–Stokes equations. In Numerical flow simulation, II, volume 75 of Notes Numer. Fluid Mech., pp. 303–318. Springer, Berlin (2001)Google Scholar
  26. 26.
    Stevenson, R.P.: Adaptive methods for solving operator equations: an overview. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pp. 543–598. Springer, Berlin (2009)Google Scholar
  27. 27.
    Stevenson, R.P.: Adaptive Wavelet Methods for Linear and Non-linear Least Squares Problems. Technical report, KdVI, UvA Amsterdam, November (2011) (submitted)Google Scholar
  28. 28.
    Stippler, A.: LAWA—Library for Adaptive Wavelet Applications (2009). Accessed 16 Feb 2013
  29. 29.
    Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47(3), 328–346 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Mechanics, pp. 241–251. Vieweg (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Numerical MathematicsUniversity of UlmUlmGermany
  2. 2.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations