Journal of Scientific Computing

, Volume 56, Issue 1, pp 122–130 | Cite as

A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection



This article is devoted to the study of multiple-relaxation-time (MRT) lattice Boltzmann method with eight-by-eight collision matrix for natural convection flow. In the velocity space, eight speed directions are used and the corresponding incompressible multiple-relaxation-time model with force term is presented. D2Q4 model is for temperature field. The coupled double distribution functions (DDF) overcome artificial compressible effect corresponding to the standard MRT model. The simulations of natural convection flows with Pr=0.71 for air and Ra=103–109 are carried out and excellent agreements are obtained to demonstrate the numerical accuracy and stability of the proposed model.


Lattice Boltzmann method Multi-relaxation-time Natural convection 



Authors would like to thank Dr. Zhenhua Chai and Lin Zheng for helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant No: 11026181).


  1. 1.
    McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988) CrossRefGoogle Scholar
  2. 2.
    Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345–349 (1989) CrossRefGoogle Scholar
  3. 3.
    Boghosian, B.M., Taylor, W.: Quantum lattice-gas model for the many-particle Schrodinger equation in d dimensions. Phys. Rev. E 57(1), 54–66 (1998) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) CrossRefGoogle Scholar
  5. 5.
    Shan, X.W., He, X.Y.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65–68 (1998) CrossRefGoogle Scholar
  6. 6.
    Palpacelli, S., Succi, S.: The quantum Lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4(5), 980–1007 (2008) Google Scholar
  7. 7.
    Kuznik, F., Obrecht, C., Rusaouen, G.: LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59, 2380–2392 (2010) MATHCrossRefGoogle Scholar
  8. 8.
    Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992) CrossRefGoogle Scholar
  9. 9.
    Ladd, A.J.C.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491–499 (1997) CrossRefGoogle Scholar
  10. 10.
    Nestler, B., Aksi, A., Selzer, M.: Combined lattice Boltzmann and phase-field simulations for incompressible fluid flow in porous media. Math. Comput. Simul. 80, 1458–1468 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Succi, S., Filippova, O., Smith, G., Kaxiras, E.: Applying the lattice Boltzmann equation to multiscale fluid problems. Comput. Sci. Eng. 3(6), 26–37 (2001) CrossRefGoogle Scholar
  12. 12.
    Prasianakis, N.I., Chikatamarla Shyam, S., Karlin, I.V., et al.: Entropic lattice Boltzmann method for simulation of thermal flows. Math. Comput. Simul. 72(2–6), 179–183 (2006) MATHCrossRefGoogle Scholar
  13. 13.
    Palpacelli, S., Succi, S.: The quantum lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4, 980C1007 (2008) Google Scholar
  14. 14.
    Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection diffusion equations. Phys. Rev. E 79, 016701 (2009) CrossRefGoogle Scholar
  15. 15.
    Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for the one dimensional nonlinear Dirac equation. Phys. Rev. E 79, 066704 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Borja, S.C., Tsai, F.T.C.: Non-negativity and stability analyses of lattice Boltzmann method for advection diffusion equation. J. Comput. Phys. 228(1), 236C56 (2009) Google Scholar
  17. 17.
    Blaak, R., Sloot, P.M.A.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256C66 (2000) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Exact equilibria for lattice kinetic equations. Phys. Rev. Lett. 81, 1–6 (1998) CrossRefGoogle Scholar
  19. 19.
    Karlin, I.V., Ferrante, A., Ottinger, H.C.: Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999) CrossRefGoogle Scholar
  20. 20.
    Ansumali, S., Karlin, I.V.: Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107, 291–308 (2002) MATHCrossRefGoogle Scholar
  21. 21.
    Ansumali, S., Karlin, I.V., Ottinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003) CrossRefGoogle Scholar
  22. 22.
    Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61(6), 6546–6562 (2000) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005) CrossRefGoogle Scholar
  24. 24.
    Ginzburg, I.: Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28(11), 1196–1216 (2005) CrossRefGoogle Scholar
  25. 25.
    D’humières, D., Bouzidi, M., Lallemand, P.: Thirteen-velocity three-dimensional lattice Boltzmann model. Phys. Rev. E 63(6), 066702 (2001) CrossRefGoogle Scholar
  26. 26.
    D’humières, D., Ginzburg, I., Krafczyk, M., et al.: Multiple-relation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 360(1792), 437–451 (2002) MATHCrossRefGoogle Scholar
  27. 27.
    Mccracken, M.E., Abaham, J.: Multiplerelaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71(3), 036701 (2005) CrossRefGoogle Scholar
  28. 28.
    Hiroaki, Y., Makoto, N.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229(20), 7774–7795 (2010) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Du, R., Shi, B.C., Chen, X.W.: Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett. A 359(6), 564–572 (2006) MATHCrossRefGoogle Scholar
  30. 30.
    Du, R., Shi, B.C.: Incompressible MRT lattice Boltzmann model with eight velocities in 2D space. Int. J. Mod. Phys. C 20(7), 1023–1037 (2009) MATHCrossRefGoogle Scholar
  31. 31.
    Mezrhab, A., Moussaoui, M.A., et al.: Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys. Lett. A 347, 3499–3507 (2010) CrossRefGoogle Scholar
  32. 32.
    Guo, Z.L., Shi, B.C., Zheng, C.G.: A coupled lattice BGK model for the Boussinesq equation. Int. J. Numer. Methods Fluids 39(4), 325–342 (2002) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Guo, Z.L., Zheng, C.G., Shi, B.C.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002) CrossRefGoogle Scholar
  34. 34.
    Dixit, H.N., Babu, V.: Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int. J. Heat Mass Transf. 49, 727–739 (2006) MATHCrossRefGoogle Scholar
  35. 35.
    Massaioli, F., Benzi, R., Succi, S.: Exponential tails in two-dimensional Rayleigh-Bénard convection. Europhys. Lett. 21(3), 305–310 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingP.R. China
  2. 2.Department of Engineering MechanicsTsinghua UniversityBeijingP.R. China

Personalised recommendations