Journal of Scientific Computing

, Volume 55, Issue 3, pp 552–574 | Cite as

Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods

  • He Yang
  • Fengyan Li
  • Jianxian Qiu


The dispersion and dissipation properties of numerical methods are very important in wave simulations. In this paper, such properties are analyzed for Runge-Kutta discontinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods when solving the linear advection equation. With the standard analysis, the asymptotic formulations are derived analytically for the discrete dispersion relation in the limit of K=kh→0 (k is the wavenumber and h is the meshsize) as a function of the CFL number, and the results are compared quantitatively between these two fully discrete numerical methods. For Lax-Wendroff discontinuous Galerkin methods, we further introduce an alternative approach which is advantageous in dispersion analysis when the methods are of arbitrary order of accuracy. Based on the analytical formulations of the dispersion and dissipation errors, we also investigate the role of the spatial and temporal discretizations in the dispersion analysis. Numerical experiments are presented to validate some of the theoretical findings. This work provides the first analysis for Lax-Wendroff discontinuous Galerkin methods.


Discrete dispersion relation Runge-Kutta discontinuous Galerkin method Lax-Wendroff discontinuous Galerkin method 


  1. 1.
    Abboud, N.N., Pinsky, P.M.: Finite-element dispersion analysis for the 3-dimensional 2nd-order scalar wave-equation. Int. J. Numer. Methods Eng. 35, 1183–1218 (1992) MATHCrossRefGoogle Scholar
  2. 2.
    Ainsworth, M.: Dispersive and dissipative behavior of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42, 553–575 (2004) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–60 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ainsworth, M., Wajid, H.A.: Dispersive and dissipative behavior of the spectral element method. SIAM J. Numer. Anal. 47, 3910–3937 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ainsworth, M., Wajid, H.A.: Explicit discrete dispersion relations for the acoustic wave equation in d-dimensions using finite element, spectral element and optimally blended schemes. In: Computer Methods in Mechanics, vol. 1, pp. 3–17 (2010) CrossRefGoogle Scholar
  7. 7.
    Chavent, G., Salzano, G.: A finite element method for the 1d water flooding problem with gravity. J. Comput. Phys. 45, 307–344 (1982) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P 1-discontinuous Galerkin method for scalar conservation laws. Modél. Math. Anal. Numér. 25, 337–361 (1991) MathSciNetMATHGoogle Scholar
  9. 9.
    Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989) MathSciNetMATHGoogle Scholar
  10. 10.
    Hesthaven, J.S., Warburton, T.: Nodal high order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hu, F., Atkins, H.: Eigensolution analysis of the discontinuous Galerkin method with non-uniform grids, part I: one space dimension. J. Comput. Phys. 182, 516–545 (2002) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hu, F., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999) MATHCrossRefGoogle Scholar
  13. 13.
    Ihlenburg, F., Babuška, I.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38, 3745–3774 (1995) MATHCrossRefGoogle Scholar
  14. 14.
    Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986) MATHCrossRefGoogle Scholar
  15. 15.
    Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press, New York (1974) Google Scholar
  16. 16.
    Peterson, T.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Qiu, J.: A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes. J. Sci. Comput. 30, 345–367 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Qiu, J., Michael, D., Shu, C.-W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005) MATHCrossRefGoogle Scholar
  19. 19.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Google Scholar
  20. 20.
    Richter, G.R.: An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50, 75–88 (1988) MATHCrossRefGoogle Scholar
  21. 21.
    Sármány, D., Botchev, M.A., van der Vegt, J.J.W.: Dispersion and dissipation error in high-order Runge-Kutta discontinuous Galerkin discretizations of the Maxwell equations. J. Sci. Comput. 33, 47–74 (2007) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Sherwin, S.: Dispersive Analysis of the Continuous and Discontinuous Galerkin Formulations. Lecture notes Google Scholar
  23. 23.
    Stanescu, D., Kopriva, D.A., Hussaini, M.Y.: Dispersive analysis for discontinuous spectral element methods. J. Sci. Comput. 15, 149–171 (2000) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge-Kutta discontinuous Galerkin methods for symmetrizable conservation laws. SIAM J. Numer. Anal. 44, 1702–1720 (2006) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(2), 772–795 (2010) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200, 2814–2827 (2011) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA
  2. 2.School of Mathematical ScienceXiamen UniversityXiamenP.R. China

Personalised recommendations