Skip to main content
Log in

Implementation of an X-FEM Solver for the Classical Two-Phase Stefan Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The classical two-phase Stefan problem in level set formulation is considered. The implementation of a solver on triangular grids is described. Extended finite elements (X-FEM) in space and an implicit Euler method in time are used to approximate the temperature. For the level set equation, a discontinuous Galerkin (DG) and a strong stability preserving (SSP) Runge-Kutta scheme are employed. Polynomial spaces of quadratic order are used. A numerical example with a change of topology is provided, and the order of convergence is studied on the Frank sphere example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995). doi:10.1006/jcph.1995.1098

    Article  MathSciNet  MATH  Google Scholar 

  2. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999). doi:10.1006/jcph.1998.6090

    Article  MathSciNet  MATH  Google Scholar 

  3. Albert, M.R., O’Neill, K.: Moving boundary-moving mesh analysis of phase change using finite elements with transfinite mappings. Int. J. Numer. Methods Eng. 23(4), 591–607 (1986). doi:10.1002/nme.1620230406

    Article  MATH  Google Scholar 

  4. Almgren, R.: Variational algorithms and pattern formation in dendritic solidification. J. Comput. Phys. 106(2), 337–354 (1993). doi:10.1016/S0021-9991(83)71112-5

    MathSciNet  MATH  Google Scholar 

  5. Ayasoufi, A., Keith, T.: Application of the conservation element and solution element method in numerical modeling of heat conduction with melting and/or freezing. Internat. J. Numer. Methods Heat Fluid Flow 13, 448–472 (2003). doi:10.1108/09615530310475902

    Article  MATH  Google Scholar 

  6. Baines, M., Hubbard, M., Jimack, P.: A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries. Appl. Numer. Math. 54(3–4), 450–469 (2005). doi:10.1016/j.apnum.2004.09.013

    Article  MathSciNet  MATH  Google Scholar 

  7. Barth, T., Sethian, J.A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40 (1998). doi:10.1006/jcph.1998.6007

    Article  MathSciNet  MATH  Google Scholar 

  8. Beckett, G., Mackenzie, J.A., Ramage, A., Sloan, D.M.: Computational solution of two-dimensional unsteady pdes using moving mesh methods. J. Comput. Phys. 182(2), 478–495 (2002). doi:10.1006/jcph.2002.7179

    Article  MathSciNet  MATH  Google Scholar 

  9. Beckett, G., Mackenzie, J.A., Robertson, M.L.: A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comput. Phys. 168(2), 500–518 (2001). doi:10.1006/jcph.2001.6721

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernauer, M.K., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33(1), 342–363 (2011). doi:10.1137/100783327

    Article  MathSciNet  MATH  Google Scholar 

  11. Caldwell, J., Chan, C.-C.: Numerical solutions of the Stefan problem by the enthalpy method and the heat balance integral method. Numer. Heat Transf., B Fundam. 33, 99–117 (1998). doi:10.1080/10407799808915025

    Article  Google Scholar 

  12. Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009). doi:10.1016/j.jcp.2009.04.044

    Article  MATH  Google Scholar 

  13. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997). doi:10.1006/jcph.1997.5721

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng, K., Fries, T.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010). doi:10.1002/nme.2768

    MathSciNet  MATH  Google Scholar 

  15. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 223(1), 398–415 (2007). doi:10.1016/j.jcp.2006.09.012

    Article  MathSciNet  MATH  Google Scholar 

  16. Chessa, J., Smolinski, P., Belytschko, T.: The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Methods Eng. 53(8), 1959–1977 (2002). doi:10.1002/nme.386

    Article  MathSciNet  MATH  Google Scholar 

  17. Chorin, A.J.: Curvature and solidification. J. Comput. Phys. 57(3), 472–490 (1985). doi:10.1016/0021-9991(85)90191-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Christopher, D.M.: Comparison of interface-following techniques for numerical analysis of phase-change problems. Numer. Heat Transf., B Fundam. 39(2), 189–206 (2001). doi:10.1080/10407790150503503

    Article  Google Scholar 

  19. Dolbow, J.: An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University, 1999. Available from: http://dolbow.cee.duke.edu/phd.html

  20. Frank, F.: Radially symmetric phase growth controlled by diffusion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 201(1067), 586–599 (1950). doi:10.1098/rspa.1950.0080

    Article  MATH  Google Scholar 

  21. Fried, M.: Niveauflächen zur Berechnung zweidimensionaler Dendrite. PhD thesis, Universität Freiburg, 1999. Available from: http://www.mathematik.uni-freiburg.de/IAM/homepages/micha/publications/diss.pdf

  22. Fried, M.: A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci. 2(2), 97–110 (2004). doi:10.1007/s00791-004-0141-4

    MathSciNet  Google Scholar 

  23. Fries, T.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(5), 503–532 (2008). doi:10.1002/nme.2259

    Article  MathSciNet  MATH  Google Scholar 

  24. Fries, T., Zilian, A.: On time integration in the XFEM. Int. J. Numer. Methods Eng. 79(1), 69–93 (2009). doi:10.1002/nme.2558

    Article  MathSciNet  MATH  Google Scholar 

  25. Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces. Appl. Numer. Math. 57, 436–454 (2007). doi:10.1016/j.apnum.2006.06.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005). doi:10.1016/j.jcp.2004.07.018

    Article  MathSciNet  MATH  Google Scholar 

  27. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). doi:10.1023/A:1025399807998

    Article  MathSciNet  MATH  Google Scholar 

  28. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998). doi:10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi:10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  30. Groß, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9, 239–257 (2006). doi:10.1007/s00791-006-0024-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Gupta, S.: The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. Applied Mathematics and Mechanics, vol. 45. North-Holland, Amsterdam (2003)

    MATH  Google Scholar 

  32. Hoppe, R.H.W.: A globally convergent multi-grid algorithm for moving boundary problems of two-phase Stefan type. IMA J. Numer. Anal. 13(2), 235–253 (1993). doi:10.1093/imanum/13.2.235

    Article  MathSciNet  MATH  Google Scholar 

  33. Ji, H., Dolbow, J.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int. J. Numer. Methods Eng. 61, 2508–2535 (2004). doi:10.1002/nme.1167

    Article  MATH  Google Scholar 

  34. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kubatko, E., Dawson, C., Westerink, J.: Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227, 9697–9710 (2008). doi:10.1016/j.jcp.2008.07.026

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). doi:10.1016/j.cam.2009.05.028

    Article  MathSciNet  MATH  Google Scholar 

  37. Lazaridis, A.: A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transf. 13(9), 1459–1477 (1970). doi:10.1016/0017-9310(70)90180-8

    Article  MATH  Google Scholar 

  38. Merle, R., Dolbow, J.: Solving thermal and phase change problems with the eXtended finite element method. Comput. Mech. 28, 339–350 (2002). doi:10.1007/s00466-002-0298-y

    Article  MATH  Google Scholar 

  39. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999). doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    Article  MATH  Google Scholar 

  40. Müller, R.: Numerische Simulation dendritischen Kristallwachstums. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2005. Available from: http://diglib.uni-magdeburg.de/Dissertationen/2005/ruemueller.pdf

  41. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991). doi:10.1137/0728049

    Article  MathSciNet  MATH  Google Scholar 

  42. Peng, D., Merriman, B., Zhao, H., Osher, S., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999). doi:10.1006/jcph.1999.6345

    Article  MathSciNet  MATH  Google Scholar 

  43. Schmidt, A.: Die Berechnung dreidimensionaler Dendriten mit Finiten Elementen. PhD thesis, Universität Freiburg, 1993. http://www.mathematik.uni-freiburg.de/IAM/homepages/alfred/paper_diss.html

  44. Sethian, J.A., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98(2), 231–253 (1992). doi:10.1016/0021-9991(92)90140-T

    Article  MathSciNet  MATH  Google Scholar 

  45. Sethian, J.A., Vladimirsky, A.: Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc. Natl. Acad. Sci. USA 97, 5699–5703 (2000). doi:10.1073/pnas.090060097

    Article  MathSciNet  MATH  Google Scholar 

  46. Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. II 98, 965–983 (1889)

    Google Scholar 

  47. Sullivan, J.M. Jr., Lynch, D.R., O’Neill, K.: Finite element simulation of planar instabilities during solidification of an undercooled melt. J. Comput. Phys. 69(1), 81–111 (1987). doi:10.1016/0021-9991(87)90157-4

    Article  MATH  Google Scholar 

  48. Voller, V.R., Swaminathan, C.R., Thomas, B.G.: Fixed grid techniques for phase change problems: A review. Int. J. Numer. Methods Eng. 30, 875–898 (1990). doi:10.1002/nme.1620300419

    Article  MATH  Google Scholar 

  49. Zabaras, N., Ganapathysubramanian, B., Tan, L.: Modelling dendritic solidification with melt convection using the extended finite element method. J. Comput. Phys. 218, 200–227 (2006). doi:10.1016/j.jcp.2006.02.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin K. Bernauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernauer, M.K., Herzog, R. Implementation of an X-FEM Solver for the Classical Two-Phase Stefan Problem. J Sci Comput 52, 271–293 (2012). https://doi.org/10.1007/s10915-011-9543-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9543-x

Keywords

Navigation