Journal of Scientific Computing

, Volume 52, Issue 2, pp 271–293 | Cite as

Implementation of an X-FEM Solver for the Classical Two-Phase Stefan Problem



The classical two-phase Stefan problem in level set formulation is considered. The implementation of a solver on triangular grids is described. Extended finite elements (X-FEM) in space and an implicit Euler method in time are used to approximate the temperature. For the level set equation, a discontinuous Galerkin (DG) and a strong stability preserving (SSP) Runge-Kutta scheme are employed. Polynomial spaces of quadratic order are used. A numerical example with a change of topology is provided, and the order of convergence is studied on the Frank sphere example.


Two-phase Stefan problem Solidification Moving boundary problem Level set method Discontinuous Galerkin approximation Extended finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995). doi: 10.1006/jcph.1995.1098 MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999). doi: 10.1006/jcph.1998.6090 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Albert, M.R., O’Neill, K.: Moving boundary-moving mesh analysis of phase change using finite elements with transfinite mappings. Int. J. Numer. Methods Eng. 23(4), 591–607 (1986). doi: 10.1002/nme.1620230406 MATHCrossRefGoogle Scholar
  4. 4.
    Almgren, R.: Variational algorithms and pattern formation in dendritic solidification. J. Comput. Phys. 106(2), 337–354 (1993). doi: 10.1016/S0021-9991(83)71112-5 MathSciNetMATHGoogle Scholar
  5. 5.
    Ayasoufi, A., Keith, T.: Application of the conservation element and solution element method in numerical modeling of heat conduction with melting and/or freezing. Internat. J. Numer. Methods Heat Fluid Flow 13, 448–472 (2003). doi: 10.1108/09615530310475902 MATHCrossRefGoogle Scholar
  6. 6.
    Baines, M., Hubbard, M., Jimack, P.: A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries. Appl. Numer. Math. 54(3–4), 450–469 (2005). doi: 10.1016/j.apnum.2004.09.013 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Barth, T., Sethian, J.A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40 (1998). doi: 10.1006/jcph.1998.6007 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Beckett, G., Mackenzie, J.A., Ramage, A., Sloan, D.M.: Computational solution of two-dimensional unsteady pdes using moving mesh methods. J. Comput. Phys. 182(2), 478–495 (2002). doi: 10.1006/jcph.2002.7179 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Beckett, G., Mackenzie, J.A., Robertson, M.L.: A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comput. Phys. 168(2), 500–518 (2001). doi: 10.1006/jcph.2001.6721 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bernauer, M.K., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33(1), 342–363 (2011). doi: 10.1137/100783327 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Caldwell, J., Chan, C.-C.: Numerical solutions of the Stefan problem by the enthalpy method and the heat balance integral method. Numer. Heat Transf., B Fundam. 33, 99–117 (1998). doi: 10.1080/10407799808915025 CrossRefGoogle Scholar
  12. 12.
    Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009). doi: 10.1016/ MATHCrossRefGoogle Scholar
  13. 13.
    Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997). doi: 10.1006/jcph.1997.5721 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cheng, K., Fries, T.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010). doi: 10.1002/nme.2768 MathSciNetMATHGoogle Scholar
  15. 15.
    Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 223(1), 398–415 (2007). doi: 10.1016/ MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chessa, J., Smolinski, P., Belytschko, T.: The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Methods Eng. 53(8), 1959–1977 (2002). doi: 10.1002/nme.386 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Chorin, A.J.: Curvature and solidification. J. Comput. Phys. 57(3), 472–490 (1985). doi: 10.1016/0021-9991(85)90191-3 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Christopher, D.M.: Comparison of interface-following techniques for numerical analysis of phase-change problems. Numer. Heat Transf., B Fundam. 39(2), 189–206 (2001). doi: 10.1080/10407790150503503 CrossRefGoogle Scholar
  19. 19.
    Dolbow, J.: An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University, 1999. Available from:
  20. 20.
    Frank, F.: Radially symmetric phase growth controlled by diffusion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 201(1067), 586–599 (1950). doi: 10.1098/rspa.1950.0080 MATHCrossRefGoogle Scholar
  21. 21.
    Fried, M.: Niveauflächen zur Berechnung zweidimensionaler Dendrite. PhD thesis, Universität Freiburg, 1999. Available from:
  22. 22.
    Fried, M.: A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci. 2(2), 97–110 (2004). doi: 10.1007/s00791-004-0141-4 MathSciNetGoogle Scholar
  23. 23.
    Fries, T.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(5), 503–532 (2008). doi: 10.1002/nme.2259 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Fries, T., Zilian, A.: On time integration in the XFEM. Int. J. Numer. Methods Eng. 79(1), 69–93 (2009). doi: 10.1002/nme.2558 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces. Appl. Numer. Math. 57, 436–454 (2007). doi: 10.1016/j.apnum.2006.06.002 MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005). doi: 10.1016/ MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). doi: 10.1023/A:1025399807998 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998). doi: 10.1090/S0025-5718-98-00913-2 MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi: 10.1137/S003614450036757X MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Groß, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9, 239–257 (2006). doi: 10.1007/s00791-006-0024-y MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Gupta, S.: The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. Applied Mathematics and Mechanics, vol. 45. North-Holland, Amsterdam (2003) MATHGoogle Scholar
  32. 32.
    Hoppe, R.H.W.: A globally convergent multi-grid algorithm for moving boundary problems of two-phase Stefan type. IMA J. Numer. Anal. 13(2), 235–253 (1993). doi: 10.1093/imanum/13.2.235 MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Ji, H., Dolbow, J.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int. J. Numer. Methods Eng. 61, 2508–2535 (2004). doi: 10.1002/nme.1167 MATHCrossRefGoogle Scholar
  34. 34.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Kubatko, E., Dawson, C., Westerink, J.: Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227, 9697–9710 (2008). doi: 10.1016/ MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). doi: 10.1016/ MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Lazaridis, A.: A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transf. 13(9), 1459–1477 (1970). doi: 10.1016/0017-9310(70)90180-8 MATHCrossRefGoogle Scholar
  38. 38.
    Merle, R., Dolbow, J.: Solving thermal and phase change problems with the eXtended finite element method. Comput. Mech. 28, 339–350 (2002). doi: 10.1007/s00466-002-0298-y MATHCrossRefGoogle Scholar
  39. 39.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999). doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J MATHCrossRefGoogle Scholar
  40. 40.
    Müller, R.: Numerische Simulation dendritischen Kristallwachstums. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2005. Available from:
  41. 41.
    Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991). doi: 10.1137/0728049 MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Peng, D., Merriman, B., Zhao, H., Osher, S., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999). doi: 10.1006/jcph.1999.6345 MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Schmidt, A.: Die Berechnung dreidimensionaler Dendriten mit Finiten Elementen. PhD thesis, Universität Freiburg, 1993.
  44. 44.
    Sethian, J.A., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98(2), 231–253 (1992). doi: 10.1016/0021-9991(92)90140-T MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Sethian, J.A., Vladimirsky, A.: Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc. Natl. Acad. Sci. USA 97, 5699–5703 (2000). doi: 10.1073/pnas.090060097 MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. II 98, 965–983 (1889) Google Scholar
  47. 47.
    Sullivan, J.M. Jr., Lynch, D.R., O’Neill, K.: Finite element simulation of planar instabilities during solidification of an undercooled melt. J. Comput. Phys. 69(1), 81–111 (1987). doi: 10.1016/0021-9991(87)90157-4 MATHCrossRefGoogle Scholar
  48. 48.
    Voller, V.R., Swaminathan, C.R., Thomas, B.G.: Fixed grid techniques for phase change problems: A review. Int. J. Numer. Methods Eng. 30, 875–898 (1990). doi: 10.1002/nme.1620300419 MATHCrossRefGoogle Scholar
  49. 49.
    Zabaras, N., Ganapathysubramanian, B., Tan, L.: Modelling dendritic solidification with melt convection using the extended finite element method. J. Comput. Phys. 218, 200–227 (2006). doi: 10.1016/ MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations