Skip to main content
Log in

Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce an iterative method for computing the first eigenpair (λ p ,e p ) for the p-Laplacian operator with homogeneous Dirichlet data as the limit of (μ q, u q ) as qp , where u q is the positive solution of the sublinear Lane-Emden equation \(-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1}\) with the same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of u q to e p is in the C 1-norm and the rate of convergence of μ q to λ p is at least O(pq). Numerical evidence is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, R., Yadava, S.L.: An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem. Arch. Ration. Mech. Anal. 127, 219–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Kay, D.: The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82(3), 351–388 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal. 32, 819–830 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreianov, B., Boyer, F., Hubert, F.: On the finite-volume approximation of regular solutions of the p-Laplacian. IMA J. Numer. Anal. 26(3), 472–502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antontsev, S.N., Díaz, J.I., de Oliveira, H.B.: Mathematical models in dynamics of non-Newtonian fluids and in glaciology. In: Proceedings of the CMNE/CILAMCE Congress. Universidade do Porto, Porto (2007), 20 pp.

    Google Scholar 

  6. Atkinson, C., Champion, C.R.: Some boundary value problems for the equation ∇⋅(|∇ϕ|N). Q. J. Mech. Appl. Math. 37, 401–419 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azorero, J.G., Alonso, J.P.: On limits of solutions of elliptic problems with nearly critical exponent. Commun. Partial Differ. Equ. 17, 2113–2126 (1992)

    Article  MATH  Google Scholar 

  8. Barrett, J.W., Liu, W.B.: Finite element approximation of the p-Laplacian. Math. Comput. 61(204), 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Bermejo, R., Infante, J.A.: A multigrid algorithm for the p-Laplacian. SIAM J. Sci. Comput. 21(5), 1774–1789 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the first eigenvalue of the p-Laplacian via the inverse power method. J. Funct. Anal. 257, 243–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the sin p function via the inverse power method. Comput. Methods Appl. Math. 11(2), 129–140 (2011)

    MathSciNet  Google Scholar 

  12. Biezuner, R.J., Ercole, G., Martins, E.M.: Eigenvalues and eigenfunctions of the Laplacian via inverse iteration with shift (submitted)

  13. Blacker, T., Bohnhoff, W., Edwards, T., Hipp, J., Lober, R., Mitchell, S., Sjaardema, G., Tautges, T., Wilson, T., Oakes, W. et al.: CUBIT mesh generation environment. Technical Report, Sandia National Labs., Albuquerque, NM. Cubit Development Team (1994)

  14. Bognár, G., Szabó, T.: Solving nonlinear eigenvalue problems by using p-version of FEM. Comput. Math. Appl. 43, 57–68 (2003)

    Article  Google Scholar 

  15. Bognár, G.: Estimation on the first eigenvalue for some nonlinear Dirichlet eigenvalue problems. Nonlinear Anal. 71(12), e2242–e2448 (2009)

    Google Scholar 

  16. Bognár, G., Rontó, M.: Numerical-analytic investigation of the radially symmetric solutions for some nonlinear PDEs. Comput. Math. Appl. 50, 983–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bueno, H., Ercole, G., Zumpano, A.: Positive solutions for the p-Laplacian and bounds for its first eigenvalue. Adv. Nonlinear Stud. 9, 313–338 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Brown, J.: Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput. 45(1), 48–63 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. Henry Poincaré 15, 493–516 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Descloux, J., Tolley, M.: An accurate algorithm for computing the eigenvalues of a polygonal membrane. Comput. Methods Appl. Mech. Eng. 39(1), 37–53 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaz, J.I., Hernandez, J.: On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 216, 593–613 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Diaz, J.I., de Thelin, F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diening, L., Kreuzer, C.: Linear convergence of an adaptative finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Drábek, P.: The uniqueness for a superlinear eigenvalue problem. Appl. Math. Lett. 12, 47–50 (1999)

    Article  MATH  Google Scholar 

  25. Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. Modél. Math. Anal. Numér. 40(6), 1069–1100 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid model in glaciology. Modél. Math. Anal. Numér. 37(1), 175–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guidotti, P., Lambers, J.V.: Eigenvalue characterization and computation for the Laplacian on general 2-D domains. Numer. Funct. Anal. Optim. 29(5–6), 507–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guan, M., Zheng, L.: The similarity solution to a generalized diffusion equation with convection. Adv. Dyn. Syst. Appl. 1(2), 183–189 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Heuveline, V.: On the computation of a very large number of eigenvalues for selfadjoint elliptic operators by means of multigrid methods. J. Comput. Phys. 184, 321–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, Y.Q., Li, R., Liu, W.: Preconditioned descent algorithms for p-Laplacian. J. Sci. Comput. 32(2), 343–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, Y.X.: A note on the asymptotic behavior of positive solutions for some elliptic equation. Nonlinear Anal. TMA 29, 533–537 (1997)

    Article  MATH  Google Scholar 

  32. Juutine, J., Lindqvist, P., Manfredi, J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MathSciNet  Google Scholar 

  33. Kawohl, B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Kuttler, J.R., Sigillito, V.G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26(2), 163–193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lefton, L., Wei, D.: Numerical approximation of the first eigenpair of the p-Laplacian using finite elements and the penalty method. Numer. Funct. Anal. Optim. 18(3–4), 389–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. TMA 12, 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lindqvist, P.: Some remarkable sine and cosine functions. Ric. Mat. 2, 269–290 (1995)

    MathSciNet  Google Scholar 

  39. Pélissier, M.-C., Reynaud, M.L.: Etude d’un modèle mathématique d’écoulement de glacier. C. R. Acad. Sci. Paris Ser. I Math. 279, 531–534 (1974)

    MATH  Google Scholar 

  40. Philip, J.R.: N-diffusion. Aust. J. Phys. 14, 1–13 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sakaguchi, S.: Concavity properties of solutions to some degenerated quasilinear elliptic Dirichlet problems. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 14, 403–421 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual, Technical Report ANL-95/11—Revision 3.1, Argonne National Laboratory (2010)

  43. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22, 1702–1722 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Veeser, A.: Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92(4), 743–770 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. I. Iso-homogeneous cases. SIAM J. Sci. Comput. 29(4), 1355–1374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grey Ercole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biezuner, R.J., Brown, J., Ercole, G. et al. Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions. J Sci Comput 52, 180–201 (2012). https://doi.org/10.1007/s10915-011-9540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9540-0

Keywords

Navigation