Journal of Scientific Computing

, Volume 51, Issue 3, pp 505–526 | Cite as

A New TV-Stokes Model with Augmented Lagrangian Method for Image Denoising and Deconvolution



Recently, TV-Stokes model has been widely researched for various image processing tasks such as denoising and inpainting. In this paper, we introduce a new TV-Stokes model for image deconvolution, and propose fast and efficient iterative algorithms based on the augmented Lagrangian method. The new TV-Stokes model is a two-step model: in the first step, a smoothed and divergence free tangential field of the observed image is recovered based on total variation (TV) minimization and a new data fidelity term; in the second step, the image is reconstructed by minimizing the distance between the unit image gradient and the regularized unit normal direction. Numerical experiments demonstrate that the proposed model has the potential to outperform popular TV-based restoration methods in preserving texture details and fine structures. As a result, an improvement in signal-to-noise ratio (SNR) is obtained for deconvolution and denoising results.


TV-Stokes model Total variation Augmented Lagrangian method Image deconvolution Image denoising 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of 1st IEEE Int. Conf. on Image Process., Austin, pp. 31–35 (1994) CrossRefGoogle Scholar
  2. 2.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chan, T.F., Esedoglu, S., Park, F., Yip, A.: Recent developments in total variation image restoration. In: The Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2005) Google Scholar
  4. 4.
    Chen, D.Q., Zhang, H., Cheng, L.Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imag. Vis., 2011. doi: 10.1007/s10851-011-0298-7, in press, published online (25 May 2011)
  5. 5.
    Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Durand, S., Nikolova, M.: Denoising of frame coefficients using l1 data fidelity term and edge preserving regularization. Multiscale Model. Simul. 6(2), 547–576 (2007) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) CrossRefGoogle Scholar
  9. 9.
    Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007) CrossRefGoogle Scholar
  10. 10.
    Liu, Q., Yao, Z., Ke, Y.: Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal. Nonlinear Anal. 67(6), 1908–1918 (2007) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1357 (2004) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rahman, T., Tai, X.-C., Osher, S.: A TV-Stokes denoising algorithm. In: Scale Space and Variational Methods in Computer Vision, pp. 473–482. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Tai, X.-C., Osher, S., Holm, R.: Image inpainting using TV-Stokes equation. In: Image Processing Based on Partial Differential Equations, pp. 3–22. Springer, Heidelberg (2006) Google Scholar
  14. 14.
    Litvinov, W.G., Rahman, T., Tai, X.-C.: A modified TV-Stokes model for image processing. SIAM J. Sci. Comput. 33(4), 1574–1597 (2011) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tai, X.-C., Borok, S., Hahn, J.: Image denoising using TV-Stokes equation with an orientation-matching minimization. In: International Conference on Scale Space and Variational Methods in Computer Vision, Voss, Norway, pp. 490–501 (2009) CrossRefGoogle Scholar
  16. 16.
    Ohtake, Y., Belyaev, A., Bogaevski, I.: Mesh regularization and adaptive smoothing. Comput. Aided Des. 33(11), 789–800 (2001) CrossRefGoogle Scholar
  17. 17.
    Wu, T.-P., Sun, S., Tang, C.-K., Shum, H.-Y.: Interactive normal reconstruction from a single image. ACM Trans. Graph. 27(5), 119 (2008) CrossRefGoogle Scholar
  18. 18.
    Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007) CrossRefGoogle Scholar
  19. 19.
    Hahn, J., Wu, C., Tai, X.-C.: Augmented Lagrangian method for generalized TV-Stokes. J. Sci. Comput., 2011. doi: 10.1007/s10915-011-9482-6, in press, published online (16 April 2011)
  20. 20.
    Hahn, J., Sofia, B., Tai, X.-C., Bruckstein, A.M.: Orientation-matching minimization for image denoising and inpainting. Int. J. Comput. Vis. 92(3), 308–324 (2011) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Candes, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dong, F., Liu, Z., Kong, D., Liu, K.: An improved LOT model for image restoration. J. Math. Imaging Vis. 34(1), 89–97 (2009) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, New York (2004) MATHGoogle Scholar
  24. 24.
    Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wu, C., Zhang, J., Tai, X.-C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Theor. Imaging 5(1), 237–261 (2011) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Afonso, M.V., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, D.Q., Cheng, L.Z., Su, F.: Restoration of images based on subspace optimization accelerating augmented Lagrangian approach. J. Comput. Appl. Math. 235(8), 2766–2774 (2011) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007) CrossRefGoogle Scholar
  30. 30.
    Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for TV minimization. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Takeda, H., Farsiu, S., Milanfar, P.: Deblurring using regularized locally adaptive kernel regression. IEEE Trans. Image Process. 17(4), 550–563 (2008) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Dabov, K., Foi, A., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Proc. SPIE Electronic Imaging, vol. 6812-07 (2008) Google Scholar
  37. 37.
    Chen, D., Cheng, L.: Alternative minimisation algorithm for non-local total variational image deblurring. IET Image Process. 4(5), 353–364 (2010) CrossRefGoogle Scholar
  38. 38.
    Buades, A., Coll, B., Morel, J.-M.: On image denoising methods. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005) MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Goossens, B., Luong, H.Q., Pizurica, A., Philips, W.: An improved non-local means algorithm for image denoising. In: International Workshop on Local and Non-Local Approximation in Image Processing (LNLA2008), Lausanne, Switzerland, (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and System, School of SciencesNational University of Defense TechnologyChangshaP.R. China

Personalised recommendations