Advertisement

Journal of Scientific Computing

, Volume 50, Issue 3, pp 495–518 | Cite as

Mode Decomposition Evolution Equations

  • Yang Wang
  • Guo-Wei Wei
  • Siyang Yang
Article

Abstract

Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Wei and Jia in Europhys. Lett. 59(6):814–819, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett. 6(7):165–167, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be easily used for secondary processing. Various simplifications of the proposed MoDEEs, including a linearized version, and an algebraic version, are discussed for computational convenience. The Fourier pseudospectral method, which is unconditionally stable for linearized high order MoDEEs, is utilized in our computation. Validation is carried out to mode separation of high frequency adjacent modes. Applications are considered to signal and image denoising, image edge detection, feature extraction, enhancement etc. It is hoped that this work enhances the understanding of high order PDEs and yields robust and useful tools for image and signal analysis.

Keywords

Mode decomposition Evolution equations High order PDE transform Anisotropic diffusion Total variation High-pass filter Partial differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angenent, S., Pichon, E., Tannenbaum, A.: Mathematical methods in medical image processing. Bull. Am. Math. Soc. 43(3), 365–396 (2006) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Archibald, R., Gelb, A., Yoon, J.H.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Archibald, R., Gelb, A., Saxena, R., Xiu, D.B.: Discontinuity detection in multivariate space for stochastic simulations. J. Comput. Phys. 228(7), 2676–2689 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Barbu, T., Barbu, V., Biga, V., Coca, D.: A PDE variational approach to image denoising and restoration. Nonlinear Anal., Real World Appl. 10(3), 1351–1361 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bates, P.W., Chen, Z., Sun, Y.H., Wei, G.W., Zhao, S.: Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol. 59(2), 193–231 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bertalmio, M.: Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE. IEEE Trans. Image Process. 15(7), 1934–1938 (2006) CrossRefGoogle Scholar
  7. 7.
    Bertozzi, A.L., Greer, J.B.: Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. 57(6), 764–790 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Buxton, R.B.: Introduction to Functional Magnetic Resonance Imaging—Principles and Techniques. Cambridge University Press, Cambridge (2002) Google Scholar
  9. 9.
    Canny, J.: A computational approach to edge-detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) CrossRefGoogle Scholar
  10. 10.
    Caselles, V., Morel, J.M., Sapiro, G., Tannenbaum, A.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7(3), 269–273 (1998) CrossRefGoogle Scholar
  11. 11.
    Catte, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chan, Y.: Wavelet Basics. Springer, Berlin (1995) CrossRefGoogle Scholar
  14. 14.
    Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Society for Industrial Mathematics, Philadelphia (2005) MATHGoogle Scholar
  15. 15.
    Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chen, K., Chen, X., Renaut, R., Alexander, G.E., Bandy, D., Guo, H., Reiman, E.M.: Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of 18f fluorodeoxyglucose positron emission tomography images. Phys. Med. Biol. 52(23), 7055–7071 (2007) CrossRefGoogle Scholar
  17. 17.
    Chen, Q.H., Huang, N., Riemenschneider, S., Xu, Y.S.: A B-spline approach for empirical mode decompositions. Adv. Comput. Math. 24(1–4), 171–195 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Chen, Z., Baker, N.A., Wei, G.W.: Differential geometry based solvation models I: Eulerian formulation. J. Comput. Phys. 229, 8231–8258 (2010) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) MATHCrossRefGoogle Scholar
  20. 20.
    Echeverria, J.C., Crowe, J.A., Woolfson, M.S., Hayes-Gill, B.R.: Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 39(4), 471–479 (2001) CrossRefGoogle Scholar
  21. 21.
    Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002) CrossRefGoogle Scholar
  23. 23.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image sharpening by flows based on triple well potentials. J. Math. Imaging Vis. 20(1–2), 121–131 (2004) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Greer, J.B., Bertozzi, A.L.: H-1 solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1–2), 349–366 (2004) MathSciNetMATHGoogle Scholar
  25. 25.
    Greer, J.B., Bertozzi, A.L.: Traveling wave solutions of fourth order PDEs for image processing. SIAM J. Math. Anal. 36(1), 38–68 (2004) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Grimm, V., Henn, S., Witsch, K.: A higher-order PDE-based image registration approach. Numer. Linear Algebra Appl. 13(5), 399–417 (2006) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gu, Y., Wei, G.W.: Conjugate filter approach for shock capturing. Commun. Numer. Methods Eng. 19(2), 99–110 (2003) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Guan, S., Lai, C., Wei, G.: A wavelet method for the characterization of spatiotemporal patterns. Physica D 163(1–2), 49–79 (2002) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Guo, H., Renaut, R., Chen, K.: An input function estimation method for FDG-PET human brain studies. Nucl. Med. Biol. 34(5), 483–492 (2007) CrossRefGoogle Scholar
  30. 30.
    Guo, H., Renaut, R.A., Chen, K., Reiman, E.: FDG-PET parametric imaging by total variation minimization. Comput. Med. Imaging Graph. 33(4), 295–303 (2009) CrossRefGoogle Scholar
  31. 31.
    Haacke, E.M., Brown, R.W., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999) Google Scholar
  32. 32.
    Huang, N.E., Long, S.R., Shen, Z.: The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech. 32, 59 (1996) CrossRefGoogle Scholar
  33. 33.
    Huang, N.E., Shen, Z., Long, S.R.: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech. 31, 417–457 (1999) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc., Math. Phys. Eng. Sci. 454(1971), 903–995 (1998) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Jain, A.K.: Partial-differential equations and finite-difference methods in image-processing. 1. image representation. J. Optim. Theory Appl. 23(1), 65–91 (1977) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Jin, J.H., Shi, J.J.: Feature-preserving data compression of stamping tonnage information using wavelets. Technometrics 41(4), 327–339 (1999) CrossRefGoogle Scholar
  37. 37.
    Jin, Z.M., Yang, X.P.: Strong solutions for the generalized Perona-Malik equation for image restoration. Nonlinear Anal., Theory Methods Appl. 73(4), 1077–1084 (2010) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Karras, D.A., Mertzios, G.B.: New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes. Meas. Sci. Technol. 20(10), 8 (2009) CrossRefGoogle Scholar
  39. 39.
    Kopsinis, Y., McLaughlin, S.: Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Li, S.: Markov Random Field Modeling in Image Analysis. Springer, New York (2009) MATHGoogle Scholar
  41. 41.
    Liang, H.L., Lin, Q.H., Chen, J.D.Z.: Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng. 52(10), 1692–1701 (2005) CrossRefGoogle Scholar
  42. 42.
    Lin, L., Wang, Y., Zhou, H.: Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1(4), 543–560 (2009) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Liu, B., Riemenschneider, S., Xu, Y.: Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mech. Syst. Signal Process. 20(3), 718–734 (2006) CrossRefGoogle Scholar
  44. 44.
    Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) CrossRefGoogle Scholar
  45. 45.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999) MATHGoogle Scholar
  46. 46.
    Mao, D., Rockmore, D., Wang, Y., Wu, Q.: EMD analysis for visual stylometry. Preprint Google Scholar
  47. 47.
    Mao, D., Wang, Y., Wu, Q.: A new approach for analyzing physiological time series. Preprint Google Scholar
  48. 48.
    Marr, D., Hildreth, E.: Theory of edge-detection. Proc. R. Soc. Lond. B, Biol. Sci. 207(1167), 187–217 (1980) CrossRefGoogle Scholar
  49. 49.
    Meyer, F.G., Coifman, R.R.: Brushlets: a tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal. 4(2), 147–187 (1997) MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992) CrossRefGoogle Scholar
  51. 51.
    Oppenheim, A.V., Schafer, R.W.: Digital Signal Process. Prentice-Hall, Englewood Cliffs (1989) Google Scholar
  52. 52.
    Perona, P., Malik, J.: Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990) CrossRefGoogle Scholar
  53. 53.
    Pesenson, M., Roby, W., McCollum, B.: Multiscale astronomical image processing based on nonlinear partial differential equations. Astrophys. J. 683(1), 566–576 (2008) CrossRefGoogle Scholar
  54. 54.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Rezaei, D., Taheri, F.: Experimental validation of a novel structural damage detection method based on empirical mode decomposition. Smart Mater. Struct. 18(4) (2009) Google Scholar
  56. 56.
    Rilling, G., Flandrin, P., Goncalves, P., Lilly, J.M.: Bivariate empirical mode decomposition. IEEE Signal Process. Lett. 14, 936–939 (2007) CrossRefGoogle Scholar
  57. 57.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992) MATHCrossRefGoogle Scholar
  58. 58.
    Saxena, R., Gelb, A., Mittelmann, H.: A high order method for determining the edges in the gradient of a function. Commun. Comput. Phys. 5(2–4), 694–711 (2009) MathSciNetGoogle Scholar
  59. 59.
    Shih, Y., Rei, C., Wang, H.: A novel PDE based image restoration: convection-diffusion equation for image denoising. J. Comput. Appl. Math. 231(2), 771–779 (2009) MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Siddiqi, K., Kimia, B.B., Shu, C.W.: Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graph. Models Image Process. 59(5), 278–301 (1997) CrossRefGoogle Scholar
  61. 61.
    Spedding, G.R., Browand, F.K., Huang, N.E., Long, S.R.: A 2D complex wavelet analysis of an unsteady wind-generated surface wavelet analysis of an unsteady wind-generated surface wave field. Dyn. Atmos. Ocean. 20, 55–77 (1993) CrossRefGoogle Scholar
  62. 62.
    Sun, Y.H., Wu, P.R., Wei, G., Wang, G.: Evolution-operator-based single-step method for image processing. Int. J. Biomed. Imaging 83847, 1 (2006) CrossRefGoogle Scholar
  63. 63.
    Sun, Y.H., Zhou, Y.C., Li, S.G., Wei, G.W.: A windowed Fourier pseudospectral method for hyperbolic conservation laws. J. Comput. Phys. 214(2), 466–490 (2006) MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Tanaka, T., Mandic, D.P.: Complex empirical mode decomposition. IEEE Signal Process. Lett. 14(2), 101–104 (2007) CrossRefGoogle Scholar
  65. 65.
    Tang, Y.-W., Tai, C.-C., Su, C.-C., Chen, C.-Y., Chen, J.-F.: A correlated empirical mode decomposition method for partial discharge signal denoising. Meas. Sci. Technol. 21, 085106 (2010) CrossRefGoogle Scholar
  66. 66.
    Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface processing via normal maps. ACM Trans. Graph. 22(4), 1012–1033 (2003) CrossRefGoogle Scholar
  67. 67.
    Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Oxford University Press, London (1948) Google Scholar
  68. 68.
    Wang, Y., Zhao, Y.B., Wei, G.W.: A note on the numerical solution of high-order differential equations. J. Comput. Appl. Math. 159(2), 387–398 (2003) MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med. Imaging 23, 930 (2004) CrossRefGoogle Scholar
  70. 70.
    Wang, Y., Wei, G., Yang, S.: Iterative filtering decomposition based on local spectral evolution kernel. J. Sci. Comput. (2011, accepted). doi: 10.1007/s10915-011-9496-0
  71. 71.
    Wang, Y., Wei, G., Yang, S.: Partial differential equation transform—variational formulation and Fourier analysis. Int. J. Numer. Methods Biomed. Eng. (2011, accepted). doi: 10.1002/cnm.1452
  72. 72.
    Wei, G.W.: Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999) CrossRefGoogle Scholar
  73. 73.
    Wei, G.W.: Wavelets generated by using discrete singular convolution kernels. J. Phys. A, Math. Gen. 33, 8577–8596 (2000) MATHCrossRefGoogle Scholar
  74. 74.
    Wei, G.W.: Oscillation reduction by anisotropic diffusions. Comput. Phys. Commun. 144, 417–342 (2002) CrossRefGoogle Scholar
  75. 75.
    Wei, G.W., Jia, Y.Q.: Synchronization-based image edge detection. Europhys. Lett. 59(6), 814–819 (2002) CrossRefGoogle Scholar
  76. 76.
    Westin, C.-F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization of diffusion tensor MRI. Med. Image Anal. 6, 93 (2002) CrossRefGoogle Scholar
  77. 77.
    Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Appl. Numer. Math. 45(2–3), 331–351 (2003) MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: Proceedings of IEEE International Conference on Acoustic Speech Signal Processing, vol. 9, pp. 150–153. Institute of Electrical and Electronics Engineers, New York (1984) Google Scholar
  79. 79.
    Wu, J.Y., Ruan, Q.Q., An, G.Y.: Exemplar-based image completion model employing PDE corrections. Informatica 21(2), 259–276 (2010) MATHGoogle Scholar
  80. 80.
    Xu, M., Zhou, S.L.: Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation. J. Math. Anal. Appl. 325(1), 636–654 (2007) MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Yang, S., Zhou, Y.C., Wei, G.W.: Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput. Phys. Commun. 143(2), 113–135 (2002) MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Yang, S., Coe, J., Kaduk, B., Martínez, T.: An “optimal” spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics. J. Chem. Phys. 130, 134113 (2009) CrossRefGoogle Scholar
  83. 83.
    You, Y., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2002) MathSciNetCrossRefGoogle Scholar
  84. 84.
    Zhao, S., Wei, G.W.: Comparison of the discrete singular convolution and three other numerical schemes for solving fisher’s equation. SIAM J. Sci. Comput. 25(1), 127–147 (2003) MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Zhao, S., Wei, G.W.: Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences. Int. J. Numer. Methods Eng. 77(12), 1690–1730 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations