Skip to main content
Log in

An Efficient NRxx Method for Boltzmann-BGK Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Cai and Li (SIAM J. Sci. Comput. 32(5):2875–2907, 2010), we proposed a numerical regularized moment method of arbitrary order (abbreviated as NRxx method) for Boltzmann-BGK equation, which makes numerical simulation using very large number of moments possible. In this paper, we are further exploring the efficiency of the NRxx method with techniques including the 2nd order HLL flux with linear reconstruction to improve spatial accuracy, the RKC schemes to relieve the time step length constraint by the regularization terms, and the revised Strang splitting to calculate convective and diffusive terms only once without loss of accuracy. It is validated by the numerical results that the overall efficiency is significantly improved and the convergence order is kept well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  2. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  3. Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, Z., Li, R., Wang, Y.: Numerical regularized moment method for high Mach number flow. arXiv:1011.5787 (2010)

  5. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grad, H.: The profile of a steady plane shock wave. Commun. Pure Appl. Math. 5(3), 257–300 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gu, X.J., Emerson, D.R.: A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Jin, S., Slemrod, M.: Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103(5–6), 1009–1033 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  11. Mizzi, S., Gu, X.J., Emerson, D.R., Barber, R.W., Reese, J.M.: Computational framework for the regularized 20-moment equations for non-equilibrium gas flows. Int. J. Numer. Methods Fluids 56(8), 1433–1439 (2008)

    Article  MATH  Google Scholar 

  12. Müller, I., Reitebuch, D., Weiss, W.: Extended thermodynamics – consistent in order of magnitude. Contin. Mech. Thermodyn. 15(2), 113–146 (2002)

    Article  Google Scholar 

  13. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn., Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Struchtrup, H.: How many moments do we need, really? In: Workshop on Moment Methods in Kinetic Theory, November (2008). ETH Zürich, Switzerland

    Google Scholar 

  17. Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)

    Article  MathSciNet  Google Scholar 

  18. Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. Multiscale Model. Simul. 5(3), 695–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge-Kutta methods with application to hyperbolic-parabolic equations. Numer. Math. 106(2), 303–334 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Torrilhon, M., Xu, K.: Stability and consistency of kinetic upwinding for advection-diffusion equations. IMA J. Numer. Anal. 26(4), 686–722 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60(10), 479–485 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys. 201(1), 61–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, J.Y., Huang, J.C.: Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 120(2), 323–339 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Li, R. & Wang, Y. An Efficient NRxx Method for Boltzmann-BGK Equation. J Sci Comput 50, 103–119 (2012). https://doi.org/10.1007/s10915-011-9475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9475-5

Keywords

Navigation