Journal of Scientific Computing

, Volume 49, Issue 3, pp 383–401 | Cite as

Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods

  • Luoping Chen
  • Yanping Chen


In this paper, we investigate a scheme for nonlinear reaction-diffusion equations using the mixed finite element methods. To linearize the mixed method equations, we use the two-grid algorithm. First, we solve the original nonlinear equations on the coarse grid, then, we solve the linearized problem on the fine grid used Newton iteration once. It is shown that the algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfy \(H=\mathcal{O}(h^{\frac{1}{2}})\). As a result, solving such a large class of nonlinear equations will not much more difficult than the solution of one linearized equation.


Two-grid method Reaction-diffusion equations Mixed finite element methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbogast, T., Wheeller, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 32, 828–852 (1997) CrossRefGoogle Scholar
  2. 2.
    Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chen, Y., Huang, Y.: A multilevel method for finite element solutions for singular two-point boundary value problems. Nat. Sci. J. Xiangtan Univ., 16, 23–26 (1994) (in Chinese) MATHGoogle Scholar
  4. 4.
    Chen, Y., Li, L.: L p error estimates of two-grid schemes of expanded mixed finite element methods. Appl. Math. Comput. 209, 197–205 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57, 193–209 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen, Y., Liu, H., Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69, 408–422 (2007) MATHCrossRefGoogle Scholar
  7. 7.
    Chen, Y., Luan, P., Lu, Z.: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods. Adv. Appl. Math. Mech. 1, 1–15 (2009) MathSciNetGoogle Scholar
  8. 8.
    Douglas, J. Jr., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mat. Appl. Comput. 1, 91–103 (1982) MathSciNetMATHGoogle Scholar
  9. 9.
    Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO. Anal. Numèr. 17, 17–33 (1983) MathSciNetMATHGoogle Scholar
  11. 11.
    Dawson, C.N., Wheeler, M.F.: Two-grid method for mixed finite element approximations of non-linear parabolic equations. Contemp. Math. 180, 191–203 (1994) MathSciNetGoogle Scholar
  12. 12.
    Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Garcia, M.F.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differ. Equ., 10, 129–149 (1994) MATHCrossRefGoogle Scholar
  14. 14.
    Huyakorn, P.S., Pinder, G.F.: Computational Methods in Surface Flow. Academic Press, New York (1983) Google Scholar
  15. 15.
    Murray, J.: Mathematical Biology, 2nd edn. Springer, New York (1993) MATHCrossRefGoogle Scholar
  16. 16.
    Squeff, M.C.J.: Superconvergence of mixed finite elements for parabolic equations. Math. Model. Numer. Anal. 21, 327–352 (1987) MathSciNetMATHGoogle Scholar
  17. 17.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Math. Aspects of the Finite Element Method. Lecture Notes in Math., vol. 606, pp. 292–315. Springer, Berlin (1977) CrossRefGoogle Scholar
  18. 18.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997) MATHGoogle Scholar
  19. 19.
    Wu, L., Allen, M.B.: A two-grid method for mixed finite element solution of reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 15, 317–332 (1999) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Xu, J.: Two-grid discretization techniques for linear and non-linear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhu, J., Zhang, Y.T., Stuart, A.N., Mark, A.: Application of discontinuous Galerkin methods for reaction diffusion systems in developmental biology. J. Sci. Comput. 40, 391–418 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mathematical and Computational ScienceSun Yat-Sen UniversityGuangzhouP.R. China
  2. 2.School of Mathematical ScienceSouth China Normal UniversityGuangzhouP.R. China

Personalised recommendations