Journal of Scientific Computing

, Volume 49, Issue 3, pp 367–382 | Cite as

Numerical Blow-up of Semilinear Parabolic PDEs on Unbounded Domains in ℝ2



We study the numerical solution of semilinear parabolic PDEs on unbounded spatial domains Ω in ℝ2 whose solutions blow up in finite time. Of particular interest are the cases where Ω=ℝ2 or Ω is a sectorial domain in ℝ2. We derive the nonlinear absorbing boundary conditions for corresponding, suitably chosen computational domains and then employ a simple adaptive time-stepping scheme to compute the solution of the resulting system of semilinear ODEs. The theoretical results are illustrated by a broad range of numerical examples.


Semilinear PDEs Unbounded spatial domains Sectorial domains Finite-time blow-up Local nonlinear boundary conditions Finite difference spatial discretization Adaptive time-stepping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10th edn. National Bureau of Standards Applied Mathematics Series, vol. 55. Dover, New York (1972) MATHGoogle Scholar
  2. 2.
    Acosta, G., Duran, R.G., Rossi, J.D.: An adaptive time step procedure for a parabolic problem with blow-up. Computing 68, 343–373 (2002) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bandle, C., Brunner, H.: Numerical analysis of semilinear parabolic problems with blow-up solutions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Madr. 88, 203–222 (1994) MathSciNetMATHGoogle Scholar
  4. 4.
    Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97, 2–22 (1998) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun. Pure Appl. Math. 41, 841–863 (1988) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Brändle, C., Quiórs, F., Rossi, J.D.: An adaptive numerical method to handle blow-up in a parabolic system. Numer. Math. 102, 39–59 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Brunner, H., Wu, X., Zhang, J.: Computational solution of blow-up problems for semilinear parabolic PDEs on unbounded domains. SIAM J. Sci. Comput. 31, 4478–4496 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Budd, C.J., Huang, W., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 2, 305–327 (1996) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deng, K., Levine, H.A.: The role of the critical exponent in blow-up problems: the sequel. J. Math. Anal. Appl. 243, 85–126 (2000) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput. 21, 255–282 (2000) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fujita, H.: On the blowing up of solutions of the Cauchy problem for u t=∆u+u 1+α. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 13, 109–124 (1966) MATHGoogle Scholar
  12. 12.
    Hagstrom, T., Keller, H.B.: Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comput. 48, 449–470 (1987) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Han, H.: The artificial boundary method—numerical solutions of partial differential equations on unbounded domains. In: Frontiers and Prospects of Contemporary Applied Mathematics, pp. 33–58 (2005) Google Scholar
  14. 14.
    Han, H., Huang, Z., Yin, D.: Exact artificial boundary conditions for quasilinear elliptic equations in unbounded domains. Commun. Math. Sci. 6, 71–83 (2008) MathSciNetMATHGoogle Scholar
  15. 15.
    Han, H., Wu, X.: Approximation of infinite boundary condition and its applications to finite element methods. J. Comput. Math. 3, 179–192 (1985) MathSciNetMATHGoogle Scholar
  16. 16.
    Han, H., Wu, X.: Artificial Boundary Method—Numerical Solution of Partial Differential Equations on Unbounded Domains. Tsinghua University Press, Beijing (2009) Google Scholar
  17. 17.
    Han, H., Wu, X., Xu, Z.: Artificial boundary conditions for Burgers’ equation using nonlinear boundary conditions. J. Comput. Math. 24, 295–304 (2006) MathSciNetMATHGoogle Scholar
  18. 18.
    Han, H., Zhang, Z.: Split local absorbing boundary conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain. J. Comput. Phys. 227, 8992–9004 (2008) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Huang, W., Ma, J., Russell, R.D.: A study of moving mesh PDE methods for numerical simulation of blow-up in reaction diffusion equations. J. Comput. Phys. 227, 6532–6552 (2008) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Levine, H.A.: The role of the critical exponent in blow-up problems. SIAM Rev. 32, 262–288 (1990) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Nakagawa, T.: Blowing up of a finite difference solution to u t=u xx+u 2. Appl. Math. Optim. 2, 337–350 (1975) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nakagawa, T., Ushijima, T.: Finite element analysis of the semi-linear heat equation of blow-up type. In: Miller, J.J.H. (ed.) Topics in Numerical Analysis III, pp. 275–291. Academic Press, London (1977) Google Scholar
  23. 23.
    Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-up in Quasilinear Parabolic Equations. Walter de Gruyter, Berlin (1995) MATHCrossRefGoogle Scholar
  24. 24.
    Souplet, P.: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. J. Differ. Equ. 153, 374–406 (1999) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Souplet, P.: Uniform blow-up profile and boundary behavior for a non-local reaction-diffusion equation with critical damping. Math. Methods Appl. Sci. 27, 1819–1829 (2004) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Souplet, P.: A note on diffusion-induced blow-up. J. Dyn. Differ. Equ. 19, 819–823 (2007) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wu, X., Zhang, J.: Artificial boundary method for two-dimensional Burgers’ equation. Comput. Math. Appl. 56, 242–256 (2008) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schrödinger equations. Phys. Rev. E 74, 037704 (2006) CrossRefGoogle Scholar
  30. 30.
    Xu, Z., Han, H., Wu, X.: Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains. Commun. Comput. Phys. 1, 479–493 (2006) Google Scholar
  31. 31.
    Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schrödinger-type equations: application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225, 1577–1589 (2007) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations. Phys. Rev. E 78, 026709 (2008) CrossRefGoogle Scholar
  33. 33.
    Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two dimensional case. Phys. Rev. E 79, 046711 (2009) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. J. Comput. Phys. 215, 552–565 (2006) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Zheng, C.: Numerical solution to the sine-Gordon equation defined on the whole real axis. SIAM J. Sci. Comput. 29, 2494–2506 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina
  3. 3.Department of MathematicsHong Kong Baptist UniversityKowloon TongP.R. China
  4. 4.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations