Journal of Scientific Computing

, Volume 49, Issue 1, pp 35–50 | Cite as

From Suitable Weak Solutions to Entropy Viscosity

  • Jean-Luc Guermond
  • Richard Pasquetti
  • Bojan Popov


This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept.


Quality Reliability Large-Eddy Simulation Suitable weak solutions Entropy viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, N.A., Stolz, S.: A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178(2), 391–426 (2002) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bardos, C., le Roux, A.Y., Nédélec, J.-C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979) MATHCrossRefGoogle Scholar
  3. 3.
    Bertoluzza, S.: The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris, Sér. I 329(12), 1097–1102 (1999) MathSciNetMATHGoogle Scholar
  4. 4.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306–331 (1968) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Guermond, J.-L.: Finite-element-based Faedo-Galerkin weak solutions to the Navier-Stokes equations in the three-dimensional torus are suitable. J. Math. Pures Appl. 85(3), 451–464 (2006) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Guermond, J.-L.: Faedo-Galerkin weak solutions of the Navier-Stokes equations with Dirichlet boundary conditions are suitable. J. Math. Pures Appl. 88, 87–106 (2007) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Guermond, J.-L.: On the use of the notion of suitable weak solutions in CFD. Int. J. Numer. Methods Fluids 57, 1153–1170 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Math. Acad. Sci. Paris 346, 801–806 (2008) MathSciNetMATHGoogle Scholar
  11. 11.
    Guermond, J.-L., Pasquetti, R.: Entropy viscosity method for high-order approximations of conservation laws. In: Ronquist, E. (ed.) ICOSAHOM09. Lecture Notes in Computational Science and Engineering, vol. 76, pp. 411–418. Springer, Berlin (2011) Google Scholar
  12. 12.
    Guermond, J.-L., Prudhomme, S.: On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation. Physica D 207, 64–78 (2005) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hoffman, J., Johnson, C.: Computational Turbulent Incompressible Flow. Applied Mathematics: Body and Soul, vol. 4. Springer, Berlin (2007) MATHCrossRefGoogle Scholar
  14. 14.
    Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951) MathSciNetMATHGoogle Scholar
  15. 15.
    Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49(180), 427–444 (1987) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54(189), 107–129 (1990) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N. S.) 81(123), 228–255 (1970) MathSciNetGoogle Scholar
  18. 18.
    Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Leray, J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  21. 21.
    Lin, F.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998) MATHCrossRefGoogle Scholar
  22. 22.
    Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Scheffer, V.: Hausdorff measure and the Navier-Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jean-Luc Guermond
    • 1
  • Richard Pasquetti
    • 2
  • Bojan Popov
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Lab. J.A. Dieudonné, UMR CNRS 6621Université de Nice-Sophia AntipolisNiceFrance

Personalised recommendations