Advertisement

Journal of Scientific Computing

, Volume 47, Issue 2, pp 170–197 | Cite as

Numerical Study of Compressible Mixing Layers Using High-Order WENO Schemes

  • Arnab Chaudhuri
  • Abdellah Hadjadj
  • Ashwin Chinnayya
  • Sandrine Palerm
Article

Abstract

This paper reports high resolution simulations using fifth-order weighted essentially non-oscillatory (WENO) schemes with a third-order TVD Runge-Kutta method to examine the features of turbulent mixing layers. The implementation of high-order WENO schemes for multi-species non-reacting Navier-Stokes (NS) solver has been validated through selective test problems. A comparative study of performance behavior of different WENO schemes has been made on a 2D spatially-evolving mixing layer interacting with oblique shock. The Bandwidth-optimized WENO scheme with total variation relative limiters is found to be less dissipative than the classical WENO scheme, but prone to exhibit some dispersion errors in relatively coarse meshes. Based on its accuracy and minimum dissipation error, the choice of this scheme has been made for the DNS studies of temporally-evolving mixing layers. The results are found in excellent agreement with the previous experimental and DNS data. The effect of density ratio is further investigated, reflecting earlier findings of the mixing growth-rate reduction.

Keywords

DNS Mixing layer WENO schemes Shock-waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, P.J., Wu, K.C.: Numerical investigation on the structure of a confined supersonic mixing layer. Phys. Fluids 3(12), 3063–3079 (1991) CrossRefMATHGoogle Scholar
  2. 2.
    Papamoschou, D.: Model for entropy production and pressure variation in confined turbulent mixing layer. AIAA J. 31(9), 1643–1650 (1993) CrossRefMATHGoogle Scholar
  3. 3.
    Vreman, B., Geurts, B., Kuerten, H.: Large -eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Balaras, E., Piomelli, U., Wallace, J.M.: Self-similar states in turbulent mixing layers. J. Fluid Mech. 446, 1–24 (2001) MATHMathSciNetGoogle Scholar
  5. 5.
    Ribault, C.L.: Large eddy simulation of compressible mixing layers. Int. J. Dyn. Fluids 1(1), 87–111 (2005) Google Scholar
  6. 6.
    Pantano, C., Sarkar, S.: A study of compressible effects in the high -speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002) CrossRefMATHGoogle Scholar
  7. 7.
    Mahle, I., Sesterhenn, J., Friedrich, R.: Turbulent mixing in temporal compressible shear layers involving detailed diffusion processes. J. Turbul. 8, 1–2 (2007) CrossRefGoogle Scholar
  8. 8.
    Goebel, S.G., Dutton, J.C.: Experimental study of compressible turbulent mixing layers. AIAA J. 29(4), 538–546 (1991) CrossRefGoogle Scholar
  9. 9.
    Samimy, M., Elliot, G.S.: Effect of compressibility on the characteristics of free shear layer. AIAA J. 28(3), 439–445 (1990) CrossRefGoogle Scholar
  10. 10.
    Barre, S., Quine, C., Dussauge, J.P.: Compressibility effects on the structure of supersonic mixing layers: Experimental results. J. Fluid Mech. 259, 47–78 (1994) CrossRefGoogle Scholar
  11. 11.
    Papamoschou, D., Roshko, A.: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477 (1974) CrossRefGoogle Scholar
  12. 12.
    Clemens, N.T., Mungal, M.G.: A planar Mie scattering technique for visualizing supersonic mixing layers. Exp. Fluids 11, 175–185 (1991) CrossRefGoogle Scholar
  13. 13.
    Martin, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006) CrossRefMATHGoogle Scholar
  14. 14.
    Taylor, E.M., Wu, M., Martin, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223, 384–397 (2007) CrossRefMATHGoogle Scholar
  15. 15.
  16. 16.
    Cloutman, L.D.: A selected library of transport coefficients for combustion and plasma physics applications. Technical Report UCRL-ID-139893, Lawrence Livermore National Lab., CA (US), 1 August 2000, doi: 10.2172/793685
  17. 17.
    Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kudryavtsev, A.N., Khotyanovsky, D.V.: A numerical method for simulation of unsteady phenomena in high speed shear flows. In: Proc. of Int. Conf. Methods of Aerophysical Research (1998) Google Scholar
  19. 19.
    Yee, H.C., Vinokur, M., Djomehri, M.J.: Entropy splitting and numerical dissipation. J. Comput. Phys. 162, 33–81 (2000) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high speed aerodynamics. J. Turbul. 6(16), 33–81 (2005) MathSciNetGoogle Scholar
  21. 21.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation. J. Comput. Phys. 186, 652–665 (2003) CrossRefMATHGoogle Scholar
  22. 22.
    Bell, J.H., Mehta, R.D.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28(12), 2034–2042 (1990) CrossRefGoogle Scholar
  23. 23.
    Spencer, B.W., Jones, B.G.H.: Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer. AIAA Paper 71-613 (1971) Google Scholar
  24. 24.
    Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903–923 (1994) CrossRefMATHGoogle Scholar
  25. 25.
    Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc. (1993) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arnab Chaudhuri
    • 1
  • Abdellah Hadjadj
    • 1
  • Ashwin Chinnayya
    • 1
  • Sandrine Palerm
    • 2
  1. 1.CORIA-INSAUniversity of RouenSt. Etienne du RouvrayFrance
  2. 2.CNESFrench Aerospace AgencyEvryFrance

Personalised recommendations